231 lines
9.0 KiB
C++
231 lines
9.0 KiB
C++
//Renata Kopecna
|
|
|
|
#include <TCanvas.h>
|
|
#include <TPaveText.h>
|
|
#include <TTree.h>
|
|
#include <TBranch.h>
|
|
#include <TF1.h>
|
|
#include <TH1D.h>
|
|
#include <TStyle.h>
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include <event.hh>
|
|
#include <parameters.hh>
|
|
#include <funcs.hh>
|
|
#include <pdf.hh>
|
|
#include <options.hh>
|
|
|
|
#include <multifit.hh>
|
|
|
|
using namespace std;
|
|
using namespace fcnc;
|
|
|
|
multifit::multifit(options* o):
|
|
opts(o)
|
|
{
|
|
output = new TFile(("result" + opts->name + ".root").c_str(), "RECREATE");
|
|
};
|
|
|
|
multifit::~multifit(){
|
|
output->Write();
|
|
output->Close();
|
|
delete output;
|
|
};
|
|
|
|
void multifit::fit_gaussian(vector<double>& values, double& gauss_mean, double& sigma_gauss_mean, double& gauss_width, double& sigma_gauss_width, double& chi_squared) const
|
|
{
|
|
|
|
double max = *max_element(std::begin(values), std::end(values));
|
|
double min = *min_element(std::begin(values), std::end(values));
|
|
|
|
double mean=0.0;
|
|
double rms=0.0;
|
|
TTree* t = new TTree("tree", "pull values");
|
|
double value;
|
|
TBranch *branch = t->Branch("value",&value,"value/D");
|
|
for (unsigned int i = 0; i < values.size(); i++) {
|
|
value = values.at(i);
|
|
branch->Fill();
|
|
t->Fill();
|
|
mean += value/values.size();
|
|
}
|
|
for (unsigned int i = 0; i < values.size(); i++){
|
|
value = values.at(i);
|
|
rms += (value - mean)*(value - mean)/values.size();
|
|
}
|
|
rms = sqrt(rms);
|
|
TF1* f1 = new TF1("f1", "gaus(0)/sqrt(2.0*3.1415926536)/abs([2])", min-5.0, max+5.0);
|
|
f1->SetParameters(1.0,mean,rms);
|
|
//f1->SetParLimits(0, 1.0, 1.0);
|
|
f1->FixParameter(0, 1.0);
|
|
t->UnbinnedFit("f1", "value");
|
|
gauss_mean = f1->GetParameter(1);
|
|
sigma_gauss_mean = f1->GetParError(1);
|
|
gauss_width = f1->GetParameter(2);
|
|
sigma_gauss_width = f1->GetParError(2);
|
|
delete f1;
|
|
delete t;
|
|
};
|
|
|
|
void multifit::update_pull(parameter* p, vector<double>& values, vector<double>& errors, double& gauss_mean, double& sigma_gauss_mean, double& gauss_width, double& sigma_gauss_width, double& chi_squared, string appendix) const
|
|
{
|
|
unsigned int runs=values.size();
|
|
string parname(p->get_name());
|
|
string descr(p->get_description());
|
|
gStyle->SetOptStat(0);
|
|
gStyle->SetOptFit(0);
|
|
//finally the pull histo
|
|
TH1D* pull_histo = new TH1D((parname + "_pull_").c_str(),
|
|
(descr + " pull distribution;" + "(" + descr
|
|
+ "^{fitted}-" + descr
|
|
+ "^{generated})/#sigma").c_str(),
|
|
50, -5.0, 5.0);//sensible for pulls
|
|
//fill histos
|
|
//this is done every time because the time is negligible
|
|
double start_value = p->get_start_value();
|
|
vector<double> pull_values;
|
|
for (unsigned int k=0; k<runs; k++){
|
|
if (errors.at(k) != 0.0){
|
|
double pull = (values.at(k)-start_value)/errors.at(k);
|
|
pull_histo->Fill(pull);
|
|
pull_values.push_back(pull);
|
|
}
|
|
}
|
|
fit_gaussian(pull_values, gauss_mean, sigma_gauss_mean, gauss_width, sigma_gauss_width, chi_squared);
|
|
|
|
TCanvas *pull_canvas = new TCanvas((parname + "_pull_" + appendix).c_str(), "Bs Likelihood Analysis: Pull distribution",1600,1200);
|
|
pull_canvas->cd();
|
|
pull_histo->Draw();
|
|
TF1 *g = new TF1("g","[0]*exp(-(x-[1])*(x-[1])/2.0/[2]/[2])",-5.0,5.0);
|
|
|
|
//for normalization: multiply with dx*histint = width/Nbins*histint
|
|
g->SetParameters(1.0/sqrt(2.0*TMath::Pi())/gauss_width*10.0/50.0*pull_histo->Integral(), gauss_mean, gauss_width);
|
|
g->Draw("same");
|
|
TPaveText* text = new TPaveText(0.6,0.7,0.88,0.88,"NDC");
|
|
text->SetFillColor(0);
|
|
std::ostringstream stream_mean;
|
|
stream_mean << "Mean: " << fixed << setprecision(3) << gauss_mean << "#pm" << sigma_gauss_mean;
|
|
std::ostringstream stream_width;
|
|
stream_width << "Width: " << fixed << setprecision(3) << gauss_width << "#pm" << sigma_gauss_width;
|
|
text->AddText(stream_mean.str().c_str());
|
|
text->AddText(stream_width.str().c_str());
|
|
text->Draw("same");
|
|
|
|
string afilename; //TODO: move to paths
|
|
if (appendix != "") afilename = "plots/pull_" + parname + "_" + appendix + ".eps";
|
|
else afilename = "plots/pull_" + parname + ".eps";
|
|
if (opts->write_eps)pull_canvas->Print(afilename.c_str(), "eps");
|
|
output->cd();
|
|
pull_canvas->Write();
|
|
delete text;
|
|
delete g;
|
|
delete pull_histo;
|
|
delete pull_canvas;
|
|
}
|
|
|
|
void multifit::update_value(parameter * p, vector<double>& values, vector<double>& errors, double& gauss_mean, double& sigma_gauss_mean, double& gauss_width, double& sigma_gauss_width, double& chi_squared, string appendix) const
|
|
{
|
|
unsigned int runs=values.size();
|
|
string parname(p->get_name());
|
|
string descr(p->get_description());
|
|
//first find min and max values
|
|
double max = *max_element(std::begin(values), std::end(values));
|
|
double min = *min_element(std::begin(values), std::end(values));
|
|
double width = max-min;
|
|
double hist_min = min - 0.5*width;
|
|
double hist_max = max + 0.5*width;
|
|
gStyle->SetOptStat(0);
|
|
gStyle->SetOptFit(0);
|
|
TH1D* value_histo = new TH1D((parname+"_values").c_str(),
|
|
(descr + ";" + descr).c_str(),
|
|
50, hist_min, hist_max);
|
|
for (unsigned int k=0; k<runs; k++) {
|
|
value_histo->Fill(values.at(k));
|
|
}
|
|
|
|
fit_gaussian(values, gauss_mean, sigma_gauss_mean, gauss_width, sigma_gauss_width, chi_squared);
|
|
TCanvas *value_canvas = new TCanvas((parname + "_value_" + appendix).c_str(), "Bs Likelihood Analysis: Value distribution",1600,1200);
|
|
value_canvas->cd();
|
|
value_histo->Draw();
|
|
TF1 *g = new TF1("g","[0]*exp(-(x-[1])*(x-[1])/2.0/[2]/[2])",-5.0,5.0);
|
|
g->SetParameters(1.0/sqrt(2.0*TMath::Pi())/gauss_width*(hist_max-hist_min)/50.0*value_histo->Integral(), gauss_mean, gauss_width);
|
|
g->Draw("same");
|
|
|
|
TPaveText* text = new TPaveText(0.6,0.7,0.88,0.88,"NDC");
|
|
text->SetFillColor(0);
|
|
std::ostringstream stream_mean;
|
|
stream_mean << "Mean: " << fixed << setprecision(3) << gauss_mean << "#pm" << sigma_gauss_mean;
|
|
std::ostringstream stream_width;
|
|
stream_width << "Width: " << fixed << setprecision(3) << gauss_width << "#pm" << sigma_gauss_width;
|
|
text->AddText(stream_mean.str().c_str());
|
|
text->AddText(stream_width.str().c_str());
|
|
text->Draw("same");
|
|
|
|
//TODO: move
|
|
string afilename;
|
|
if (appendix != "") afilename = "plots/value_" + parname + "_" + appendix + ".eps";
|
|
else afilename = "plots/value_" + parname + ".eps";
|
|
if (opts->write_eps) value_canvas->Print(afilename.c_str(), "eps");
|
|
output->cd();
|
|
value_canvas->Write();
|
|
delete text;
|
|
delete value_histo;
|
|
delete value_canvas;
|
|
delete g;
|
|
}
|
|
|
|
void multifit::update_error(parameter* p, vector<double>& values, vector<double>& errors, double& gauss_mean, double& sigma_gauss_mean, double& gauss_width, double& sigma_gauss_width, double& chi_squared, string appendix) const
|
|
{
|
|
unsigned int runs=values.size();
|
|
string parname(p->get_name());
|
|
string descr(p->get_description());
|
|
//then find min and max errors
|
|
double max = *max_element(std::begin(errors), std::end(errors));
|
|
double min = *min_element(std::begin(errors), std::end(errors));
|
|
|
|
double width = max - min;
|
|
double hist_min = min - 0.5*width;
|
|
double hist_max = max + 0.5*width;
|
|
gStyle->SetOptStat(0);
|
|
gStyle->SetOptFit(0);
|
|
TH1D* error_histo = new TH1D((parname+"_errors").c_str(),
|
|
("#sigma(" + descr + ");#sigma(" + descr + ")").c_str(),
|
|
100, hist_min, hist_max);
|
|
for (unsigned int k=0; k<runs; k++){
|
|
error_histo->Fill(errors.at(k));
|
|
}
|
|
fit_gaussian(errors, gauss_mean, sigma_gauss_mean, gauss_width, sigma_gauss_width, chi_squared);
|
|
TCanvas *error_canvas = new TCanvas((parname + "_error_" + appendix).c_str(), "Bs Likelihood Analysis: Error distribution",1600,1200);
|
|
|
|
error_canvas->cd();
|
|
error_histo->Draw();
|
|
TF1 *g = new TF1("g","[0]*exp(-(x-[1])*(x-[1])/2.0/[2]/[2])",-5.0,5.0);
|
|
g->SetParameters(1.0/sqrt(2.0*TMath::Pi())/gauss_width*(hist_max-hist_min)/100.0*error_histo->Integral(), gauss_mean, gauss_width);
|
|
g->Draw("same");
|
|
TPaveText* text = new TPaveText(0.6,0.7,0.88,0.88,"NDC");
|
|
text->SetFillColor(0);
|
|
std::ostringstream stream_mean;
|
|
stream_mean << "Mean: " << fixed << setprecision(3) << gauss_mean << "#pm" << sigma_gauss_mean;
|
|
std::ostringstream stream_width;
|
|
stream_width << "Width: " << fixed << setprecision(3) << gauss_width << "#pm" << sigma_gauss_width;
|
|
text->AddText(stream_mean.str().c_str());
|
|
text->AddText(stream_width.str().c_str());
|
|
text->Draw("same");
|
|
|
|
//TODO: move
|
|
string afilename;
|
|
|
|
if (appendix != "") afilename = "plots/error_" + parname + "_" + appendix + ".eps";
|
|
else afilename = "plots/error_" + parname + ".eps";
|
|
|
|
if (opts->write_eps) error_canvas->Print(afilename.c_str(), "eps");
|
|
|
|
output->cd();
|
|
error_canvas->Write();
|
|
delete text;
|
|
delete error_histo;
|
|
delete error_canvas;
|
|
delete g;
|
|
}
|