522 lines
22 KiB
C++
522 lines
22 KiB
C++
//Renata Kopecna
|
|
|
|
#include <mainfit.hh>
|
|
|
|
#include <fstream>
|
|
#include <sstream> // std::istringstream
|
|
|
|
#include <event.hh>
|
|
#include <fitter.hh>
|
|
#include <folder.hh>
|
|
#include <paths.hh>
|
|
#include <funcs.hh>
|
|
#include <design.hh>
|
|
#include <helpers.hh>
|
|
#include <constants.hh>
|
|
|
|
#include <bu2kstarmumu_generator.hh>
|
|
#include <bu2kstarmumu_plotter.hh>
|
|
#include <bu2kstarmumu_parameters.hh>
|
|
|
|
#include <spdlog.h>
|
|
|
|
#include <TStyle.h>
|
|
|
|
int mainfit(fcnc::options opts, basic_params params, bool fitReference, bool fitToy, bool likelihoodScan, bool FeldmanCousin){
|
|
|
|
//TODO
|
|
bool fitData = !fitToy;
|
|
//TODO: add a test where I cna try this on a toy file
|
|
|
|
if(fitData) spdlog::info("[FIT]\tFit signal data"); //signal data << FINAL FIT!!
|
|
if(fitReference)spdlog::info("[FIT]\tFit reference channel: J/psi K*+"); //reference channel only
|
|
|
|
//--------------------------------
|
|
// Set all the options
|
|
//--------------------------------
|
|
|
|
//TODO: declare maybe in the header or elsewhere
|
|
const bool UseBinnedFit = !fitReference;
|
|
const bool SimultaneousFit = true;
|
|
const bool FixAngularBckgnd = false; //Fix the background to the shape of the upper mass sideband
|
|
const bool constrainBmass = false;
|
|
const bool FixedSwave = !fitReference; //TODO
|
|
const bool ConstrainedSwave = false; //TODO
|
|
const bool ConstrainedFS = false; //TODO
|
|
|
|
const bool LoadFSfrom2Dfit = !fitReference && !(opts.systematic > -1);
|
|
//const bool JpsiWithRareStats = false; //Try to fit the Jpsi fit with only a subsample of events //TODO
|
|
const double fractionOfStats = 1.0; //Use only a fraction of statistics, eg for half set this to 0.5
|
|
|
|
//TODO: set the fraction of stats accordingly if JpsiWithRareStats; will make my life easier
|
|
|
|
const bool NP = false; //TODO
|
|
const bool Blind = fitData && !fitReference;
|
|
|
|
const bool plotPulls = true; //Do you wanna pull plots with or without pulls?
|
|
bool plotSignalRegion = fitReference; //Plot only the region around B mass, makes nicer plots
|
|
|
|
const unsigned int nBins = UseBinnedFit ? opts.get_nQ2bins() : 1;
|
|
|
|
if (fitToy && params.polarity!= 0){
|
|
spdlog::warn("Your polarity is not set to both ofr whatever reason when fitting a toy!");
|
|
spdlog::warn("Setting the polarity to 0!");
|
|
params.polarity = 0;
|
|
}
|
|
//------------------------------------------------------------------------------------------------
|
|
|
|
if((int)ConstrainedSwave + (int) ConstrainedFS + (int) LoadFSfrom2Dfit > 1){
|
|
//If at least two of those, then crash
|
|
spdlog::error("Use only one option to constrain FS:");
|
|
spdlog::error("Constrained sWave" + boolToString(ConstrainedSwave));
|
|
spdlog::error("Constrained FS" + boolToString(ConstrainedFS));
|
|
spdlog::error("Load FS from 2D fit" + boolToString(LoadFSfrom2Dfit));
|
|
assert(0);
|
|
}
|
|
|
|
opts.fit_full_angular_bkg = true; //fold also the bkg?
|
|
opts.individual_penalties = false;
|
|
|
|
//If blinded, don't plot anything
|
|
opts.write_eps = !Blind;
|
|
opts.write_pdf = false;
|
|
opts.write_C = false;
|
|
|
|
//Fit both angles and mass
|
|
opts.only_angles = false;
|
|
opts.only_Bmass = false;
|
|
|
|
//Fit swave?
|
|
opts.swave = true;
|
|
|
|
//Use weights
|
|
opts.weighted_fit = true;
|
|
|
|
//What framework?
|
|
opts.shift_lh = false;
|
|
opts.hesse_postrun = true;
|
|
opts.squared_hesse = true;//params.folding>-1;
|
|
opts.minos_errors = false;// params.folding==-1;
|
|
|
|
//Flat background?
|
|
opts.flat_bkg = false;
|
|
//What order of bkg
|
|
opts.bkg_order_costhetak = 5;
|
|
|
|
opts.fit_mkpi = true; //Use fit to Kpi mass?
|
|
opts.use_mkpi = false; //Do the 5D fit? //TODO: probably doesn't work now
|
|
opts.simple_mkpi = false;
|
|
opts.isobar = false;
|
|
opts.asymptotic = false; //Use the improved hesse calculation?
|
|
|
|
//Check that sWave is on when fitting Kpi mass
|
|
assert(!(opts.fit_mkpi && !opts.swave));
|
|
assert(!(opts.use_mkpi && !opts.swave));
|
|
|
|
//Use angular acceptance corrections
|
|
opts.update_efficiencies = true;
|
|
|
|
//generate nametag for root file to save results:
|
|
std::string results_file = final_result_name(fitReference, false, params,
|
|
SimultaneousFit, nBins, params.Run,
|
|
fitToy, fractionOfStats,
|
|
NP, -1); //FitOnlyRun is not reflected in opts here TODO
|
|
|
|
|
|
//Set the available PDFs: this depends on the selected Run for now, so if only one is selected, run over one pdf, if both, use two
|
|
std::vector<UInt_t> pdf_idx;
|
|
if (params.Run == 1 || params.Run == 12) pdf_idx.push_back(1);
|
|
if (params.Run == 2 || params.Run == 12) pdf_idx.push_back(2);
|
|
|
|
//--------------------------------
|
|
// Load data
|
|
//--------------------------------
|
|
spdlog::info("[FIT]\tLoading data...");
|
|
std::vector<std::vector<fcnc::event>>events;
|
|
|
|
if(fitToy){
|
|
events.push_back(fcnc::load_events(get_finalToys_file(fitReference,nBins, SimultaneousFit, params,1),"Events", -1)); //Run1
|
|
events.push_back(fcnc::load_events(get_finalToys_file(fitReference,nBins, SimultaneousFit, params,2),"Events", -1)); //Run2
|
|
}
|
|
else{
|
|
std::vector<fcnc::event> tmp = fcnc::load_events(get_theFCNCpath(0,1), "Events", -1); //Run1
|
|
if (!fitReference) events.push_back(fcnc::filterResonances(tmp));
|
|
else events.push_back(tmp);
|
|
tmp = fcnc::load_events(get_theFCNCpath(0,2), "Events", -1); //Run2
|
|
if (!fitReference) events.push_back(fcnc::filterResonances(tmp));
|
|
else events.push_back(tmp);
|
|
}
|
|
|
|
//check that the number of pdfs is the same as number of event vectors
|
|
if (pdf_idx.size() != events.size()){
|
|
spdlog::error("Something went very wrong when loading the events and setting the pdfs.");
|
|
spdlog::error("The number of PDFs != number of event vectors: {0:d} vs {1:d}",pdf_idx.size(), events.size());
|
|
return 5;
|
|
}
|
|
|
|
//we are good to go, now; how many individual pdfs are used?
|
|
const UInt_t nPDFs = pdf_idx.size();
|
|
|
|
//Control print of the loaded events
|
|
UInt_t N_tot = 0;
|
|
for (UInt_t n = 0; n < nPDFs; n++){
|
|
spdlog::debug("Event vector {0:d}:\t"+(Blind?"Larger 1 ":std::to_string(events.at(n).size())),n);
|
|
if (events.at(n).size()==0){
|
|
spdlog::error("Empty event vector!");
|
|
return 404;
|
|
}
|
|
N_tot += events.at(n).size();
|
|
}
|
|
spdlog::info("Total number of used events:\t{0:d}", N_tot);
|
|
|
|
//Set fit ranges //TODO: just move it to init angle parameters
|
|
double angleRange = 1.0;
|
|
double PprimeRangeScale = 10.0;
|
|
if (params.usePprime) angleRange *= PprimeRangeScale;
|
|
double angleStepSize = 0.1;
|
|
|
|
//get signal fractions and event numbers
|
|
//TODO: fix this when you know whether we need the eventNumbers here specifically
|
|
double sig_frac[nBins];
|
|
|
|
unsigned int event_numbers[nBins][nPDFs];
|
|
|
|
for(unsigned int b = 0; b < nBins; b++){
|
|
for(unsigned int n = 0; n < nPDFs; n++){
|
|
//get event numbers and signal fraction from global function, given the total number of events
|
|
//TODO: check what to do with JpsiWithRareStats
|
|
EventNumbers(b, n, sig_frac[b], event_numbers[b][n], N_tot, nBins, nPDFs);
|
|
event_numbers[b][n] *= fractionOfStats;
|
|
}
|
|
}
|
|
|
|
//Control print
|
|
for(unsigned int b = 0; b < nBins; b++){
|
|
for(unsigned int n = 0; n < nPDFs; n++){
|
|
spdlog::debug("q2bin={0:d}\tPDF={1:d}\tf_sig={2:f}\tN={3:d}", b, n, sig_frac[b], event_numbers[b][n]);
|
|
}
|
|
}
|
|
|
|
//create the fitter, plotter, parameteres and pdfs
|
|
fcnc::fitter f(&opts);
|
|
fcnc::folder fldr(&opts);
|
|
fcnc::options theOptions[nPDFs];
|
|
fcnc::bu2kstarmumu_plotter * thePlotter[nPDFs];
|
|
std::vector<fcnc::parameters*> theParams [nBins];
|
|
std::vector<fcnc::pdf*> theProbs [nBins];
|
|
std::vector< std::vector<fcnc::event>* > selection[nBins];
|
|
|
|
//these parameters are common:
|
|
std::vector<std::string> common_params = param_string(opts, false); //set MC to true to avoid background there
|
|
spdlog::info("Shared parameters: " + convert_vector_to_string(common_params));
|
|
//set common parameters:
|
|
if(SimultaneousFit) f.set_common_parameters(common_params);
|
|
|
|
//Get the name of files needed for constraining
|
|
std::string signalMCFile = final_result_name_MC(params, nBins, false, false, SimultaneousFit, false, false);
|
|
std::string refrenceMCFile = final_result_name_MC(params, 1, true, false, SimultaneousFit, false, true);
|
|
bool takeAngBkgFromRef = true;
|
|
std::string upperMassBkgFile = final_result_name_bkg(takeAngBkgFromRef ? 1 : nBins, takeAngBkgFromRef, false, true, false, params);
|
|
std::string upperMassKpiBkgFile = final_result_name_bkg(takeAngBkgFromRef ? 1 : nBins, takeAngBkgFromRef, false, true, true, params);
|
|
std::string RefMassFile = final_result_name_mass(true,1,true,params,params.Run);
|
|
|
|
for(UInt_t n = 0; n < nPDFs; n++){
|
|
spdlog::debug("PDF {0:d}", n);
|
|
UInt_t idx = pdf_idx.at(n);
|
|
opts.update_angle_ranges(); //Set angles in options back to defaults
|
|
opts.update_efficiencies = true; //This ensures the acceptance weights to be taken into account.
|
|
//Set the label
|
|
if (fitToy) opts.plot_label = "Toy sample";
|
|
else opts.plot_label = "LHCb data";
|
|
opts.name = std::to_string(idx+1) + "_"+ get_eps_label(fitReference,false,false,fitToy, nBins, -1,-SimultaneousFit,params); //TODO: FIX THIS!!!
|
|
|
|
//Set the options and init the plotter
|
|
theOptions[n] = opts;
|
|
theOptions[n].run = pdf_idx.at(n); //Set proper run to options
|
|
thePlotter[n] = new fcnc::bu2kstarmumu_plotter(&theOptions[n]);
|
|
|
|
for(unsigned int b = 0; b < nBins; b++){
|
|
theOptions[n].q2_min = theOptions[n].TheQ2binsmin.at(b) ;
|
|
theOptions[n].q2_max = theOptions[n].TheQ2binsmax.at(b);
|
|
|
|
//create parameter sets
|
|
fcnc::bu2kstarmumu_parameters * leParameters = new fcnc::bu2kstarmumu_parameters(&theOptions[n]);
|
|
|
|
//create PDFs
|
|
fcnc::bu2kstarmumu_pdf * lePDF = new fcnc::bu2kstarmumu_pdf(&theOptions[n], leParameters);
|
|
|
|
//define center of q2bin as effective q2 by hand
|
|
leParameters->eff_q2.init_fixed(bin_center_q2(theOptions[n],b));
|
|
|
|
//Init mass
|
|
std::string fileName_dataMass = final_result_name_mass(true, 1, true, params, params.Run);
|
|
leParameters->init_Bmass(fileName_dataMass,pdf_idx.at(n),0.5,fixConstr(false,constrainBmass));
|
|
|
|
|
|
//initiate the sig/bkg fraction for mass fit
|
|
leParameters->f_sig.init(fitReference ? 0.8 : 0.3, 0.0, 1.0, 0.05);
|
|
|
|
//Init mass parameters
|
|
leParameters->init_mass_parameters(n,nBins,b,0.01);
|
|
leParameters->fix_param_from_rootfile(fitReference ? refrenceMCFile : signalMCFile,
|
|
{"alpha_1","alpha_2","n_1","n_2"}, idx, b);
|
|
//Fix the mass mean to the one from reference channel
|
|
if (!fitReference) leParameters->init_Bmass(RefMassFile, pdf_idx.at(n), 0.0, fixConstr(true,false));
|
|
|
|
//Init the ratio of sigmas in signal MC/reference MC
|
|
if (!fitReference) leParameters->m_scale.init_fixed(get_sigmaRatio_fromMC(params,nBins,b,pdf_idx.at(n)));
|
|
else leParameters->m_scale.init_fixed(1.0);
|
|
|
|
//Init mass background
|
|
leParameters->init_mass_background_parameters(nBins,b,opts.fit_lambda);
|
|
|
|
//(de)activate S-wave
|
|
double swaveStepSize = opts.swave && !FixedSwave ? 0.1 : 0.0;
|
|
|
|
//Init the Kstar mass fit
|
|
if(opts.fit_mkpi || opts.use_mkpi){
|
|
//p-wave
|
|
leParameters->init_mkpi_pWave_parameters(fitReference,0.0);
|
|
leParameters->init_kpi_background_parameters(fitReference,0.05);
|
|
//s-wave
|
|
if (opts.swave) leParameters->init_mkpi_sWave_parameters(fitReference, 0.0);
|
|
}
|
|
|
|
//Init the sWave
|
|
if (opts.swave){
|
|
leParameters->init_sWave_parameters(swaveStepSize);
|
|
leParameters->get_param_from_rootfile(RefMassFile, {"FS"}, idx, b,fixConstr(!fitReference,ConstrainedFS));
|
|
}
|
|
|
|
//Add angular parameters
|
|
leParameters->init_angular_parameters(nBins,b,angleStepSize,angleRange, Blind);
|
|
|
|
//Add background to angular observables
|
|
|
|
if(!theOptions[n].flat_bkg){ //If bkg not flat, init based on upper mass sideband fit
|
|
leParameters->get_param_from_rootfile(upperMassBkgFile,
|
|
PAR_BKG_STRING(opts.folding,opts.bkg_order_costhetal,opts.bkg_order_costhetak),
|
|
params.Run,b,fixConstr(FixAngularBckgnd,false));
|
|
if (params.folding ==4){
|
|
leParameters->cbkgctk2.init(-1.75,-3.0,1.5,0.05);
|
|
leParameters->cbkgctk4.init(-1.75,-3.0,1.5,0.05);
|
|
}
|
|
}
|
|
|
|
//make sure all configured values are also the start_value:
|
|
leParameters->take_current_as_start();
|
|
|
|
//Add the parameters and the pdf into the vectors
|
|
theParams[b].push_back(leParameters);
|
|
theProbs [b].push_back(lePDF);
|
|
|
|
spdlog::info("[PDF{0:d}]\tSaved PDF and parameters!", n);
|
|
|
|
//Load the events
|
|
std::vector<fcnc::event> * leEvents = new std::vector<fcnc::event>;
|
|
|
|
//choose events from the event vector and sort corresponding to q2bin or non-resonant:
|
|
//If use all events, just keep the numbers as they are
|
|
UInt_t NNN = events[n].size()*fractionOfStats; // UInt_t NNN = fractionOfStats == 1 ? events[n].size() : 0.5 + event_numbers[b][n];
|
|
|
|
//This randomly pre-selected list of events is used, if not all events are wanted (eg if JpsiWithRareStats)
|
|
std::vector<UInt_t> event_idxs(NNN);
|
|
|
|
if(fractionOfStats != 1.0){
|
|
event_idxs = fcnc::GetNOutOfM(NNN, events[n].size(), 0, false, false);
|
|
}
|
|
else{
|
|
std::iota (std::begin(event_idxs), std::end(event_idxs), 0); //This just puts 0,1,2,3,... into a vector
|
|
}
|
|
spdlog::info("Running fitter with a total number of events of: {0:d}", event_idxs.size());
|
|
|
|
for_indexed(auto e: event_idxs){
|
|
//if (i%2!=0) continue;
|
|
fcnc::event meas = events[n].at(e);
|
|
//Cut on B mass
|
|
if(meas.m < B_MASS_LOW || meas.m > B_MASS_HIGH) continue;
|
|
//Select either magUp or magDown
|
|
if(params.polarity==1 && meas.magnet > 0) continue;
|
|
if(params.polarity==-1 && meas.magnet < 0) continue;
|
|
|
|
//Select only events in the given bin
|
|
if(meas.q2 < theOptions[n].TheQ2binsmin.at(b) || meas.q2 > theOptions[n].TheQ2binsmax.at(b)) continue;
|
|
|
|
//Cut on Kpi mass
|
|
if(meas.mkpi < opts.mkpi_min || meas.mkpi > opts.mkpi_max) continue;
|
|
|
|
//Fold if needed
|
|
if(!filterFldFour(&meas, &theOptions[n])) continue; //remove ctk events
|
|
if(!opts.full_angular) fldr.fold(&meas);
|
|
|
|
leEvents->push_back(meas);
|
|
}
|
|
|
|
//Load the acceptance correction
|
|
lePDF->load_coeffs_eff_phsp_4d();
|
|
lePDF->update_cached_normalization(leParameters);
|
|
lePDF->update_cached_efficiencies(leParameters, leEvents);
|
|
|
|
spdlog::info("[PDF{0:d}]\tFinished selecting the events: {1:d}",n, leEvents->size());
|
|
|
|
//save event vector in vector
|
|
selection[b].push_back(leEvents);
|
|
|
|
if(selection[b].back()->size() > 0){
|
|
spdlog::info("[PDF{0:d}]\t[BIN{1:d}]\tDone!", n, b);
|
|
}
|
|
else{
|
|
spdlog::critical("No events found for PDF={0:d} and q2-bin={1:d}. Exit!",n,b);
|
|
assert(0);
|
|
}
|
|
} //end loop over bins
|
|
theOptions[n].update_efficiencies = false; //Prevent multiple weights
|
|
} //end loop over PDFs
|
|
|
|
//Measure the time for the fit:
|
|
runTime timer = runTime();
|
|
|
|
//Save the fit results
|
|
std::vector<int>fit_results[nBins];
|
|
std::vector<double>f_sigs[nBins];
|
|
std::vector<double>f_sigserr[nBins];
|
|
std::vector<UInt_t>evts_cntr[nBins];
|
|
|
|
//--------------------------------
|
|
// FIT
|
|
//--------------------------------
|
|
spdlog::info("[FIT]\tFit started.");
|
|
|
|
for(unsigned int b = 0; b < nBins; b++){
|
|
|
|
//Start the clock
|
|
timer.start();
|
|
time_t startTime = time(0);
|
|
|
|
spdlog::info("[START]\tStart the fit for bin #{0:d}", b);
|
|
|
|
//fit the events:
|
|
const bool do_fit = !FeldmanCousin; //TODO: ask David wtf
|
|
int fitresult = 0;
|
|
if(do_fit){
|
|
if(!SimultaneousFit){
|
|
for(UInt_t n = 0; n < nPDFs; n++){
|
|
UInt_t idx = pdf_idx.at(n);
|
|
spdlog::info("[FIT{0:d}]\tRunning the fitter...", idx);
|
|
fitresult = f.fit(theProbs[b].at(n), theParams[b].at(n), selection[b].at(n));
|
|
fit_results[b].push_back(fitresult);
|
|
}
|
|
}
|
|
else{
|
|
spdlog::info("[FIT]\tFitting the following events simultaenously:");
|
|
for(UInt_t s = 0; s < selection[b].size(); s++) spdlog::info("PDF #{0:d}: {1:d}", pdf_idx.at(s), selection[b].at(s)->size());
|
|
fitresult = f.fit(theProbs[b], theParams[b], selection[b]);
|
|
fit_results[b].push_back(fitresult);
|
|
spdlog::info("Q2BIN={0:d}\tLLH={1:f}", b, f.likelihood());
|
|
|
|
//run likelihood profile scan //TODO: fix and implement
|
|
if(likelihoodScan) return 5;
|
|
|
|
//run feldman cousins //TODO: fix and implement
|
|
if(FeldmanCousin) return 5;
|
|
}
|
|
}
|
|
else{ //in case of not fit, just update the pdfs....?
|
|
for(UInt_t n = 0; n < nPDFs; n++){
|
|
theProbs[b].at(n)->update_cached_efficiencies(theParams[b].at(n), selection[b].at(n));
|
|
fit_results[b].push_back(fitresult);
|
|
}
|
|
}
|
|
|
|
//Stop the clock
|
|
timer.stop(startTime);
|
|
|
|
|
|
//save signal fraction and event number for each bin and each pdf:
|
|
for(UInt_t n = 0; n < nPDFs; n++){
|
|
f_sigs[b] .push_back(((fcnc::bu2kstarmumu_parameters *) theParams[b].at(n))->f_sig.get_value());
|
|
f_sigserr[b].push_back(((fcnc::bu2kstarmumu_parameters *) theParams[b].at(n))->f_sig.get_error());
|
|
evts_cntr[b].push_back(selection[b].at(n)->size());
|
|
}
|
|
|
|
//plot each set of pdfs with the data points:
|
|
bool do_plot = !(likelihoodScan || FeldmanCousin);
|
|
if (do_plot){
|
|
for(UInt_t n = 0; n < nPDFs; n++){
|
|
std::string eps_label = get_eps_label(fitReference,false, false, fitToy,
|
|
params.nBins, b,
|
|
params.polarity,
|
|
SimultaneousFit, theOptions[n]);
|
|
|
|
theOptions[n].q2_label = q2_label(opts.TheQ2binsmin.at(b), opts.TheQ2binsmax.at(b));
|
|
|
|
spdlog::info("[PLOT]\t"+eps_label);
|
|
thePlotter[n]->SetPulls(plotPulls);
|
|
if (plotSignalRegion) thePlotter[n]->plot_data((fcnc::bu2kstarmumu_pdf*)theProbs[b].at(n), (fcnc::bu2kstarmumu_parameters*)theParams[b].at(n), selection[b].at(n), get_MainFitPlot_path(), eps_label, plotSignalRegion);
|
|
thePlotter[n]->plot_data((fcnc::bu2kstarmumu_pdf*)theProbs[b].at(n), (fcnc::bu2kstarmumu_parameters*)theParams[b].at(n), selection[b].at(n), get_MainFitPlot_path(), eps_label+"_incBkg", false);
|
|
}
|
|
|
|
//plot both PDFs together
|
|
std::vector<fcnc::bu2kstarmumu_pdf*> * prober = (std::vector<fcnc::bu2kstarmumu_pdf*> *) & theProbs[b];
|
|
|
|
std::string eps_label = get_eps_label(fitReference,false, false, fitToy,
|
|
params.nBins, b,
|
|
params.polarity,
|
|
SimultaneousFit, opts);
|
|
std::vector<fcnc::bu2kstarmumu_parameters*> * paramser = (std::vector<fcnc::bu2kstarmumu_parameters*> *) & theParams[b];
|
|
thePlotter[0]->SetPulls(plotPulls);
|
|
if (plotSignalRegion) thePlotter[0]->plot_added_pdfs(prober, paramser, & selection[b], get_MainFitPlot_path(), eps_label, plotSignalRegion); //TODO add prefix to the plots
|
|
thePlotter[0]->plot_added_pdfs(prober, paramser, & selection[b], get_MainFitPlot_path(), eps_label+"_incBkg", false);
|
|
|
|
|
|
}//end do_plot
|
|
}//end loop over bins for fitter
|
|
|
|
if(likelihoodScan || FeldmanCousin) return 5; //Not implemented yet
|
|
|
|
//--------------------------------
|
|
// Print & Save
|
|
//--------------------------------
|
|
|
|
//Print running time
|
|
timer.print(nBins);
|
|
|
|
|
|
if (!Blind) print_all_parameters(nBins, pdf_idx, theParams, spdlog::level::debug);
|
|
|
|
//Save the fit results into a txt file in case
|
|
for(UInt_t n = 0; n < nPDFs; n++){
|
|
for(unsigned int b = 0; b < nBins; b++){
|
|
//Print all fit results
|
|
for(unsigned int b = 0; b < nBins; b++){
|
|
spdlog::info("[BIN{0:d}]:\tFitresult: {1:d}", b, fit_results[n].at(b));
|
|
}
|
|
std::string txtFile = get_MainFitResult_path() + "fitresult_"
|
|
+ get_eps_label(fitReference,false, false, fitToy,
|
|
params.nBins, b,
|
|
params.polarity,
|
|
SimultaneousFit, theOptions[n])+ ".txt";
|
|
((fcnc::bu2kstarmumu_parameters *) theParams[b].at(n))->save_param_values(txtFile);
|
|
}
|
|
}
|
|
|
|
//Print signal yield in the terminal and to a tex file
|
|
if (!Blind){
|
|
print_sig_yields(nBins, pdf_idx, evts_cntr, f_sigs, f_sigserr);
|
|
print_bkg_yields(nBins, pdf_idx, evts_cntr, f_sigs, f_sigserr);
|
|
}
|
|
print_sig_yields_tex(get_eps_label(fitReference,false, false, fitToy,
|
|
params.nBins, -1,
|
|
params.polarity,
|
|
SimultaneousFit, opts),
|
|
nBins, pdf_idx, &opts, evts_cntr, f_sigs, f_sigserr);
|
|
|
|
|
|
//saving results to root file TODO
|
|
save_results(results_file,nBins,pdf_idx,fit_results,theParams,SimultaneousFit,&opts);
|
|
spdlog::info("Finished fit.");
|
|
|
|
return 0;
|
|
|
|
}
|