EWP-BplusToKstMuMu-AngAna/Code/Selection/flavio/parse_sensitivities.py

68 lines
2.1 KiB
Python

import numpy as np
from math import sqrt
# angular parameters for each folding (appearing in this order in the input files)
pars = {
0: ['S1s', 'S3', 'S6s', 'S9'],
1: ['S1s', 'S3', 'S4'],
2: ['S1s', 'S3', 'S5'],
3: ['S1s', 'S3', 'S7'],
4: ['S1s', 'S3', 'S8'],
}
import glob
files = {}
# get input files for given folding (if more than 1 for same folding, take first)
for fold in pars.keys():
files[fold] = glob.glob('./SensitivityFromToys/*folding{}.txt'.format(fold))[0]
u = {} #fill with all uncertainties from toys
for fold in pars.keys():
d = np.genfromtxt(files[fold], comments='#')
i = 0
for angpar in pars[fold]:
i = i+1 #header
for q2bin in range(8):
assert d[i][0]==q2bin
u[(fold, angpar, q2bin)] = d[i][1]
i = i+1
# simple conversions of uncertainties for FL and AFB
def FLerr(S1serr):
return S1serr*4/3
def AFBerr(S6serr):
return S6serr*3/4
def get_ordvals(year, scale):
# take various uncertainties from different foldings
ordvals = []
for q2 in [0, 1, 2, 3, 4, 6, 7]: # not including q2bin 5 cause too close to ccbar
ordvals = ordvals + [
year,
FLerr(u[(1, 'S1s', q2)])*scale,
u[(3, 'S3', q2)]*scale,
u[(1, 'S4', q2)]*scale,
u[(2, 'S5', q2)]*scale,
AFBerr(u[(0, 'S6s', q2)])*scale,
u[(3, 'S7', q2)]*scale,
u[(4, 'S8', q2)]*scale,
u[(0, 'S9', q2)]*scale,
]
return ordvals
with open('./measurements/Bp2Kstmumu_skeleton.yml', 'r') as myfile:
skeleton = myfile.read()
ordvals = get_ordvals(2016, 1) #no scaling for 2016
with open('measurements/Bp2Kstmumu_2016.yml', "w") as text_file:
print(skeleton.format(*ordvals), file=text_file)
lumi2016 = 5.2
lumi2018 = 9.0
addKppi0 = 2 # factor 2 larger stat?
statfactor = lumi2018/lumi2016 * addKppi0
ordvals = get_ordvals(2018, 1/sqrt(statfactor)) #no scaling for 2016
with open('measurements/Bp2Kstmumu_2018andpi0.yml', "w") as text_file:
print(skeleton.format(*ordvals), file=text_file)