EWP-BplusToKstMuMu-AngAna/Code/FCNCFitter/sources/Params/parameterscan.cc

459 lines
21 KiB
C++

#include <parameterscan.hh>
#include <iostream>
#include <fstream>
#include <paths.hh>
#include <options.hh>
#include <funcs.hh>
#include <generator.hh>
#include <parameters.hh>
#include <event.hh>
#include <funcs.hh>
#include <pdf.hh>
#include <fitter.hh>
#include <helpers.hh>
#include <TFile.h>
#include <TTree.h>
#include <TCanvas.h>
#include <spdlog.h>
/**
* @file parameterscan.cc
* @author Renata Kopecna
* @date 2021-03-02
*
*/
fcnc::parameterscan::parameterscan(options* o):
multifit(o)
{
};
void fcnc::parameterscan::scan(std::string param_name, double min, double max, unsigned int nsteps, unsigned int nevents, unsigned int reruns, pdf* prob, parameters* params, generator* gen, bool only_float_in_generation){
std::vector<unsigned int > events;
events.push_back(nevents);
std::vector<pdf* > probs;
probs.push_back(prob);
std::vector<parameters* > the_params;
the_params.push_back(params);
std::vector<generator* > gens;
gens.push_back(gen);
scan(param_name, min, max, nsteps, events, reruns, probs, the_params, gens, only_float_in_generation);
}
//void parameterscan::scan(std::string param_name, double min, double max, unsigned int nsteps, unsigned int nevents, unsigned int reruns, pdf_type* prob, params_type* params, generator_type* gen, bool only_float_in_generation) //fixed in fit on fixed value
void fcnc::parameterscan::scan(std::string param_name, double min, double max, unsigned int nsteps, std::vector<unsigned int> nevents, unsigned int reruns, std::vector<pdf*> pdfs, std::vector<parameters*> params, std::vector<generator*> gens, bool only_float_in_generation){
parameter* param_varied = 0;
for (unsigned int i=0; i<params.size(); i++){
if (params.at(i)->get_parameter(param_name)) {
param_varied = params.at(i)->get_parameter(param_name);
break;
}
}
//open TeX file
std::ofstream myFile;
open_Latex_noteFile(latex_paramScan(), myFile);
//parameter* param_varied = params->get_parameter(param_name);
double fit_start_value = param_varied->get_start_value();
if (only_float_in_generation) spdlog::info( "The fit start value will be fixed at: {0:f}",fit_start_value);
int param_index = param_varied->get_index();
if (param_varied != 0){
std::string param_description = param_varied->get_description();
std::string param_root = param_varied->get_root_name();
spdlog::info( "Doing parameter scan of parameter {0:d}: {1:s}", param_index, param_name);
spdlog::info( "Varying parameter from {0:f} to {1:f}", min, max);
unsigned int nparams = 0;
for (unsigned int i=0; i<params.size(); i++){
nparams += params.at(i)->nparameters();
}
//params->nparameters();
TH1D* error_hists[nparams];
TH1D* value_hists[nparams];
double mean_values[nparams][nsteps+1];
double sigma_mean_values[nparams][nsteps+1];
double mean_errors[nparams][nsteps+1];
double sigma_mean_errors[nparams][nsteps+1];
double min_hist = min - 0.5*(max-min)/nsteps;
double max_hist = max + 0.5*(max-min)/nsteps;
//create histograms
unsigned int start_param = 0;
for (unsigned int i=0; i<params.size(); i++){
for (unsigned int j = 0; j < nparams; j++){
unsigned int idx = start_param+j;
parameter* param = params.at(i)->get_parameter(j);
error_hists[idx] = new TH1D(("error_" + param->get_name()).c_str(),
("#sigma" + param->get_root_name() + ";" + param_root).c_str(),
nsteps+1, min_hist, max_hist);
error_hists[idx]->SetMarkerStyle(8);
error_hists[idx]->SetMarkerColor(4);
value_hists[idx] = new TH1D(("value_" + param->get_name()).c_str(),
(param->get_root_name() + ";" + param_root).c_str(),
nsteps+1, min_hist, max_hist);
value_hists[idx]->SetMarkerStyle(8);
value_hists[idx]->SetMarkerColor(4);
}
start_param += params.at(i)->nparameters();
}
//do precalculations
for (unsigned int i=0; i<params.size(); i++){
pdfs.at(i)->init(params.at(i));
}
//create output trees
//current values to fill into the tree
double value, error, error_up, error_down, start_value, param_value, nominal_error, nominal_value;
int step, run, migrad, status_cov;
std::vector<TTree*> trees;//one tree for every varied parameter
//start_param = 0;
for (unsigned int i=0; i<params.size(); i++){
for (unsigned int j = 0; j < nparams; j++){
//unsigned int idx = start_param+j;
parameter* param = params.at(i)->get_parameter(j);
if (param->get_step_size() != 0.0){
std::string parname(param->get_name());
std::string pardesc(param->get_description());// + " results");
TTree* t = new TTree(parname.c_str(), pardesc.c_str());
t->Branch("step",&step,"step/I");
t->Branch("run",&run,"run/I");
t->Branch("param_value",&param_value,"param_value/D");
t->Branch("value",&value,"value/D");
t->Branch("error",&error,"error/D");
t->Branch("nominal_value",&nominal_value,"nominal_value/D");
t->Branch("nominal_error",&nominal_error,"nominal_error/D");
t->Branch("error_up",&error_up,"error_up/D");
t->Branch("error_down",&error_down,"error_down/D");
t->Branch("start_value",&start_value,"start_value/D");
t->Branch("migrad",&migrad,"migrad/I");
t->Branch("status_cov",&status_cov,"status_cov/I");
trees.push_back(t);
}
}
//start_param += params.at(i)->nparameters();
}
//enter main loop
for (unsigned int i = 0; i <= nsteps; i++){
//reset all results
std::vector<std::vector<double> > values(nparams, std::vector<double>(reruns, 0.0));
std::vector<std::vector<double> > errors(nparams, std::vector<double>(reruns, 0.0));
std::vector<std::vector<double> > errors_up(nparams, std::vector<double>(reruns, 0.0));
std::vector<std::vector<double> > errors_down(nparams, std::vector<double>(reruns, 0.0));
std::vector<std::vector<double> > nominal_values(nparams, std::vector<double>(reruns, 0.0));
std::vector<std::vector<double> > nominal_errors(nparams, std::vector<double>(reruns, 0.0));
std::vector<int> return_values(reruns);
//only_float_in_generation means that you use a varied parameter
//for generation but in the fit use the start_value
//this can be used for systematic studies
//we would also need to do a nominal fit
//then we can see the actual difference
//choose new value for the scan parameter
param_value = double(i)*(max - min)/(nsteps) + min;
if (!only_float_in_generation){ //float in generation and fit
param_varied->set_value(param_value);
param_varied->set_start_value(param_value);
}
// param_varied->init(param_name, param_description,
// param_value,
// param_varied->get_min(), param_varied->get_max(),
// param_varied->get_step_size());
//this is the scanned parameter so usually we change it before generation and fit
//this is the point: we need to do a couple reruns
fitter fit(opts);
fit.set_common_parameters(common_params);
for (unsigned int k = 0; k < reruns; k++){
spdlog::info( "Parameter "+param_name+" {0:f}", param_value);
spdlog::info( "Run no. {0:d}", k);
std::string num;
std::stringstream out;
out << opts->name << "_" << (i+1) << "_" << (k+1); //TOOD: move to paths
num = out.str();
if (only_float_in_generation){//this generates with updated parameter values
param_varied->set_value(param_value);
param_varied->set_start_value(param_value);
}
// param_varied->init(param_name, param_description,
// param_value,
// param_varied->get_min(), param_varied->get_max(),
// param_varied->get_step_size());
for (unsigned int j=0; j<params.size(); j++){
params.at(j)->reset_parameters();//this line was missing before? did we generate with fitted params?
}
std::vector< std::vector <event> > temp_events;
for (unsigned int j=0; j<gens.size(); j++){
std::vector<event> ev = gens.at(j)->generate(nevents.at(j), params.at(j), pdfs.at(j));
temp_events.push_back(ev);
}
std::vector< std::vector <event> * > events;
for (unsigned int j=0; j<gens.size(); j++){
events.push_back(&temp_events.at(j));
}
if (only_float_in_generation){//this tries to fit with original parameter values
param_varied->set_value(fit_start_value);
param_varied->set_start_value(fit_start_value);
}
// param_varied->init(param_name, param_description,
// fit_start_value, //use start value here!
// param_varied->get_min(), param_varied->get_max(),
// param_varied->get_step_size());
for (unsigned int j=0; j<params.size(); j++){
params.at(j)->reset_parameters();
}
int result = 0;
result = fit.fit(pdfs, params, events, num);
return_values.at(k) = result;
if (result != 0 && opts->repeat_on_fail){
spdlog::warn( "Fit failed, repeating run");
k--;
continue;
}
unsigned int start_param = 0;
for (unsigned int j = 0; j < params.size(); j++){
for (unsigned int l = 0; l < params.at(j)->nparameters(); l++){
unsigned int idx = start_param+l;
parameter* param = params.at(j)->get_parameter(l);
values.at(idx).at(k) = param->get_value();
errors.at(idx).at(k) = param->get_error();
errors_up.at(idx).at(k) = param->get_error_up();
errors_down.at(idx).at(k) = param->get_error_down();
}
start_param += params.at(j)->nparameters();
}
//now we want to do a nominal fit (if the respective options are set)
if (opts->refitting_nominal && only_float_in_generation){//now we do a nominal fit
spdlog::info( "Nominal fit");
param_varied->set_value(param_value);
param_varied->set_start_value(param_value);
// param_varied->init(param_name, param_description,
// param_value,
// param_varied->get_min(), param_varied->get_max(),
// param_varied->get_step_size());
for (unsigned int j = 0; j < params.size(); j++){
params.at(j)->reset_parameters();
}
//and lets fit
fit.fit(pdfs, params, events, num);
//extract the parameters from the fit
start_param = 0;
for (unsigned int j = 0; j < params.size(); j++){
for (unsigned int l = 0; l < params.at(j)->nparameters(); l++){
unsigned int idx = start_param+l;
parameter* param = params.at(j)->get_parameter(l);
nominal_values.at(idx).at(k) = (param->get_value());
nominal_errors.at(idx).at(k) = (param->get_error());
}
start_param += params.at(j)->nparameters();
}
}
else{
for (unsigned int j = 0; j < nparams; j++){
nominal_values.at(j).at(k) = (0.0);
nominal_errors.at(j).at(k) = (0.0);
}
}
}//end reruns
//determine means/widths of the distributions via gauss-fits
unsigned int start_param = 0;
for (unsigned int j = 0; j < params.size(); j++){
for (unsigned int k = 0; k < params.at(j)->nparameters(); k++){
unsigned int idx = start_param + k;
parameter* param = params.at(j)->get_parameter(k);
if (param->get_step_size() != 0.0){
std::string step;
std::stringstream out;
out << (i+1);
step = out.str();
double dummy1, dummy2, dummy3, dummy4, dummy5;
double mean_value, mean_error, sigma_mean_value, sigma_mean_error;
update_pull(param, values.at(idx), errors.at(idx),
dummy1, dummy2, dummy3, dummy4, dummy5, step);
update_value(param, values.at(idx), errors.at(idx),
mean_value, sigma_mean_value, dummy3, dummy4, dummy5, step);
update_error(param, values.at(idx), errors.at(idx),
mean_error, sigma_mean_error, dummy3, dummy4, dummy5, step);
value_hists[idx]->SetBinContent(i+1,mean_value);
value_hists[idx]->SetBinError(i+1,sigma_mean_value);
error_hists[idx]->SetBinContent(i+1,mean_error);
error_hists[idx]->SetBinError(i+1,sigma_mean_error);
mean_values[idx][i] = mean_value;//for the output tables
sigma_mean_values[idx][i] = sigma_mean_value;//for the output tables
mean_errors[idx][i] = mean_error;
sigma_mean_errors[idx][i] = sigma_mean_error;
}
}
start_param += params.at(j)->nparameters();
}
//save tree results
int param_idx = 0;
output->cd();
start_param = 0;
for (unsigned int j = 0; j < params.size(); j++){//this gives nice output
for (unsigned int l = 0; l < params.at(j)->nparameters(); l++){
unsigned int idx = start_param+l;
parameter* param = params.at(j)->get_parameter(l);
if (param->get_step_size() != 0.0){
TTree* t = trees.at(param_idx);
for (unsigned int k=0; k<reruns; k++){
step = i;
run = k;
//param_value is already set;
value = values.at(idx).at(k);
error = errors.at(idx).at(k);
nominal_value = nominal_values.at(idx).at(k);
nominal_error = nominal_errors.at(idx).at(k);
error_up = errors_up.at(idx).at(k);
error_down = errors_down.at(idx).at(k);
start_value = param->get_start_value();
migrad = return_values.at(k) % 100;
status_cov = return_values.at(k) / 100;
t->Fill();
}
param_idx++;
}
}
start_param += params.at(j)->nparameters();
}
}
//save output trees
for (unsigned int j = 0; j < trees.size(); j++){
trees.at(j)->Write();
}
//summary output
myFile << "Parameter scan results: values\\\\" << std::endl;
myFile << "\\begin{tabular}{|c|";
for (unsigned int i=0; i<=nsteps; i++){
myFile << "c";
}
myFile << "|}\\hline" << std::endl;
myFile << "$" << param_varied->get_description() << "$";
for (unsigned int i=0; i<=nsteps; i++){
double param_value = double(i)*(max - min)/(nsteps) + min;
myFile << " & " << std::setprecision(2) << param_value;
}
myFile << "\\\\ \\hline" << std::endl;
start_param = 0;
for (unsigned int i=0; i < params.size(); i++){
for (unsigned int j=0; j < params.at(i)->nparameters(); j++){
unsigned int idx = start_param+j;
if (params.at(i)->get_parameter(j)->get_step_size() != 0.0){
myFile << "$" << params.at(i)->get_parameter(j)->get_description() << "$";
for (unsigned int k=0; k <= nsteps; k++){
myFile << " & $" << std::setprecision(2)
<< mean_values[idx][k] << " \\pm "
//<< mean_errors[i][j]
<< sigma_mean_values[idx][k]
<< "$";
}
myFile << "\\\\" << std::endl;
}
}
start_param += params.at(i)->nparameters();
}
myFile << "\\hline \\end{tabular}" << std::endl;
myFile << "Parameter scan results: errors\\\\" << std::endl;
myFile << "\\begin{tabular}{|c|";
for (unsigned int i=0; i<=nsteps; i++){
myFile << "c";
}
myFile << "|}\\hline" << std::endl;
myFile << "$" << param_varied->get_description() << "$";
for (unsigned int i=0; i<=nsteps; i++){
double param_value = double(i)*(max - min)/(nsteps) + min;
myFile << " & " << std::setprecision(2) << param_value;
}
myFile << "\\\\ \\hline" << std::endl;
start_param = 0;
for (unsigned int i=0; i < params.size(); i++){
for (unsigned int j=0; j < params.at(i)->nparameters(); j++){
unsigned int idx = start_param+j;
if (params.at(i)->get_parameter(j)->get_step_size() != 0.0){
myFile << "$" << params.at(i)->get_parameter(j)->get_description() << "$";
for (unsigned int k=0; k <= nsteps; k++){
myFile << " & $" << std::setprecision(2)
<< mean_errors[idx][k] << " \\pm "
<< sigma_mean_errors[idx][k] << "$";
}
myFile << "\\\\" << std::endl;
}
}
start_param += params.at(i)->nparameters();
}
myFile << "\\hline \\end{tabular}" << std::endl;
start_param = 0;
for (unsigned int i=0; i < params.size(); i++){
for (unsigned int j=0; j < params.at(i)->nparameters(); j++){
unsigned int idx = start_param+j;
//print result histos
if (params.at(i)->get_parameter(j)->get_step_size() != 0.0){
output->cd();
parameter* param = params.at(i)->get_parameter(j);
std::string error_name = "parameter scan sigma(" + param->get_name() + ")";
TCanvas *c1 = new TCanvas(error_name.c_str(), error_name.c_str(), 1600, 1200);
c1->cd();
error_hists[idx]->Draw("e");
if (opts->write_eps) c1->Print(get_param_scan_path(param->get_name(),true).c_str(), "eps");
c1->Write();
delete error_hists[idx];
delete c1;
std::string value_name = "Parameter scan "+param->get_name();
TCanvas *c2 = new TCanvas(value_name.c_str(), value_name.c_str(), 1600, 1200);
c2->cd();
value_hists[idx]->Draw("e");
if (opts->write_eps) c2->Print(get_param_scan_path(param->get_name(),false).c_str(), "eps");
c2->Write();
delete value_hists[idx];
delete c2;
//TODO add pulls
}
}
start_param += params.at(i)->nparameters();
}
}
else{
spdlog::error("Parameter "+param_name+" not found.");
assert(0);
}
}