import os import dotenv import sys import argparse import pandas as pd import mplhep import zfit from prettytable import PrettyTable dotenv.load_dotenv('../properties.env') sys.path.insert(0, os.getenv('SYS_PATH')) from b2kstll.models.angular import B2Kstll from b2kstll.plot import plot_distributions from hep_analytics.processing.extract import FileManager from hep_analytics.processing.transform import select_feature, reweight_feature from hep_analytics.processing.visualisation import reweight_comparing_plot FILE_MC = os.getenv('MC_FILE') FILE_GEN = os.getenv('GEN_FILE') def main(): parser = argparse.ArgumentParser() parser.add_argument('--q2bin', dest ='q2bin', default = 0) args = parser.parse_args() Q2BIN = int(args.q2bin) mplhep.style.use("LHCb2") bin_ranges = [(0.25, 4.00), (4.00, 8.00), (11.00, 12.50), (15.00, 18.00), (1.10, 6.00), (1.1, 2.5), (2.5, 4.0), (4.0, 6.0), (6.0, 8.0)] print(f"Selected Q2 Bin Range is {bin_ranges[Q2BIN]}") bin_labels = [r"$0.25 < q^2 < 4.00$", r"$4.00 < q^2 < 8.00$", r"$11.00 < q^2 < 12.50$", r"$15.00 < q^2 < 18.00$", r"$1.10 < q^2 < 6.00$", r"$1.1 < q^2 < 2.5$", r"$2.5 < q^2 < 4.0$", r"$4.0 < q^2 < 6.0$", r"$6.0 < q^2 < 8.0$"] filemanager = FileManager(file = FILE_MC, tree = "Events", branches = ["q2", "costhetak", "costhetal", "phi"]) mc_data = filemanager.extract_data() q2_mc, theta_k_mc, theta_l_mc, phi_mc = mc_data[0], mc_data[1], mc_data[2], mc_data[3] q2_mc, indices = select_feature(feature = q2_mc, limits = bin_ranges[Q2BIN]) phi_mc = phi_mc[indices] theta_l_mc = theta_l_mc[indices] theta_k_mc = theta_k_mc[indices] lower_costhetak_cut = float(os.getenv('LOWER_COSTHETAK_CUT')) upper_costhetak_cut = float(os.getenv('UPPER_COSTHETAK_CUT')) theta_k_mc, indices = select_feature(feature = theta_k_mc, limits = (lower_costhetak_cut, upper_costhetak_cut)) q2_mc = q2_mc[indices] phi_mc = phi_mc[indices] theta_l_mc = theta_l_mc[indices] filemanager = FileManager(file = FILE_GEN, tree = "Events", branches = ["q2", "costhetak", "costhetal", "phi"]) gen_data = filemanager.extract_data() q2_gen, theta_k_gen, theta_l_gen, phi_gen = gen_data[0], gen_data[1], gen_data[2], gen_data[3] q2_gen, indices = select_feature(feature = q2_gen, limits = bin_ranges[Q2BIN]) phi_gen = phi_gen[indices] theta_l_gen = theta_l_gen[indices] theta_k_gen = theta_k_gen[indices] theta_k_gen, indices = select_feature(feature = theta_k_gen, limits = (lower_costhetak_cut, upper_costhetak_cut)) q2_gen = q2_gen[indices] phi_gen = phi_gen[indices] theta_l_gen = theta_l_gen[indices] angular_data = pd.DataFrame({'ctl': theta_l_mc, 'ctk': theta_k_mc, 'phi': phi_mc}) angular_data.to_csv(f"ang_fit_mc_q2_bins_{Q2BIN}_bin.csv", index = False) x = B2Kstll('ctl','ctk','phi') x.set_acc(f"./acc_3d_JpsiKstMC_reweighted_4_bin.yaml") obs, pdf, _ = x.get_pdf('PWave') q2_mc_weights = reweight_feature(original_feature = q2_mc, target_feature = q2_gen, n_bins = 25) reweight_comparing_plot(original_feature = q2_mc, target_feature = q2_gen, weights = q2_mc_weights, n_bins = 25, suptitle = f"{bin_labels[Q2BIN]}", titles = ["Q2 MC", "Q2 MC (reweighted)", "Q2 Gen"], save = "reweighted_q2_gen_mc.png") datazfit = zfit.Data.from_pandas(df = angular_data, obs = obs, weights = q2_mc_weights) nll = zfit.loss.UnbinnedNLL(model = pdf, data = datazfit) minimizer = zfit.minimize.Minuit() result = minimizer.minimize(nll) param_errors, _ = result.errors() print(param_errors) info_table = PrettyTable(["Variable", "Value", "Lower Error", "Upper Error"]) fit_labels = ["AFB", "FL", "S3", "S4", "S5", "S7", "S8", "S9"] for name in fit_labels: value = result.params[name]["value"] lower = result.params[name]["minuit_minos"]["lower"] upper = result.params[name]["minuit_minos"]["upper"] info_table.add_row([name, value, lower, upper]) print(info_table) plot_distributions(result, suffix = f"accPwavePDF_{Q2BIN}_bin_reweighted_mc") if __name__ == "__main__": main()