

Angular analysis of $B^0 \rightarrow K^{*0} \mu^+ \mu^$ at LHCb with 1 fb⁻¹

E. Ben-Haim¹, T. Blake², M. De Cian³, U. Egede⁴, J. Lefrancois⁵, C. Parkinson⁴, M. Patel⁴, F. Polci¹, C. Salzmann³, M. H. Schune⁵, J. Serrano⁶, N. Serra³, A. Shires⁴

> LPNHE, Université Pierre et Marie Curie, Universit´e Paris Diderot, CNRS/IN2P3, Paris, France CERN, Geneva, Switzerland Universität Zürich, Switzerland Imperial College, London, UK Universite de Paris-Sud 11, France Universite d'Aix - Marseille, France

Abstract

The angular distribution and differential branching fraction of the $B^0 \to K^{*0} \mu^+ \mu^-$ decay are studied using a data sample, collected by the LHCb experiment, that corresponds to an integrated luminosity of 1 fb−¹ . A first measurement of the zero-crossing point of the forwardbackward asymmetry of the dimuon system is also presented.

Contents

¹ Changes since v2rX:

² • There have been a large number of cosmetic changes made in this draft of the ANA note: the zero crossing point measurement has been moved after the angular analysis results; the discussion of the S-wave and the threshold terms has been moved after the angular analysis results. There have also been changes made to the text in several places to hopefully improve the readability of the document.

 • A bug has been found and corrected in the estimation of the zero- \bullet crossing point of A_{FB} . This results in a small change in the zero-crossing $_{10}$ point, changing the value of the crossing point from $5.0^{+0.9}_{-1.4}$ to 4.9 ± 0.9 .

 The bug related to the use of weighted datasets in RooFit. It was discovered that when cloning a weighted dataset, information about the weights was lost (even though the dataset still had a flag set to say that it was weighted). Without the weights applied the forward $_{15}$ backward asymmetry is reduced, reducing the gradient of A_{FB} in the region around the zero-crossing point and increasing the error on q_0^2 . As expected, the value of q_0^2 itself is almost unchanged by turning on/off the weights to correct for the acceptance correction. The effect is largest for low q^2 where the acceptance effects in $\cos \theta_\ell$ can be large.

- A p-value of the data with respect to the SM hypothesis has been calculated for the q^2 bins using toy pseudo-experiments (Sec. [15.5\)](#page-96-0).
- ²² The systematic uncertainties on the angular observables have been re-evaluated using toy-experiments (Sec. [18.13\)](#page-115-0).
- ²⁴ A summary of the final results has been added.
- Changes since v3r0:

 • Two problems were spotted with the systematic Tables. [57-](#page-192-0)[65](#page-200-0) in Ap-pendix [H:](#page-191-0)

- 1. There was a problem identified with the systematic associated to ²⁹ the B p_T re-weighting (due to a broken ROOT ntuple). The large systematic uncertainty that (mistakenly) appeared in the v3r0 has been reduced to a negligible level.
- 2. Two bugs were also identified in the script that makes the ta- bles. The first bug resulted in the systematic uncertainties being assigned with the wrong sign. The second bug resulted in the
	-

 sign and magnitude of some of the systematic uncertainties being assigned the wrong value. The overall impact of the two bugs does not significantly change the conclusions that we drew from Appendix [H.](#page-191-0)

- ³⁹ The text describing the systematic uncertainties has also been updated in an attempt to make the description more complete.
- Changes since v3r1:
- A true p-value test has been added in Sec. [15.5.](#page-96-0) This test is based on the point-to-point dissimilarity method described in Ref. [\[1\]](#page-204-0).
- The differential branching fraction description has been re-written.
- A key has been added linking the description of the systematic uncer-tainties in the text to the tables of numbers in Secs. [7.5](#page-33-1) and [19.0.1.](#page-118-0)
- Sec. [9.3](#page-50-0) has been added, showing the signal angular resolution obtained using simulated events.
- A short paragraph explaining the differences between the zero crossing result in this ANA note and the preliminary result (in which the bug described above was present) gas been added.

₅₂ 1 Introduction

53 This analysis note describes the angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ with 1 fb^{-1} of integrated luminosity collected by the LHCb experiment in 2011. ⁵⁵ This data set corresponds to the entirety of the Reco 12-Stripping 17 dataset.

⁵⁶ 1.1 Angular observables

⁵⁷ The decay $B^0 \to K^{*0} \mu^+ \mu^-$ is a flavour changing neutral current process that ⁵⁸ proceeds via electroweak box or penguin diagrams in the Standard Model ⁵⁹ (SM). Beyond the SM, new particles can enter in loop-order diagrams with ⁶⁰ comparable amplitudes and lead to deviations from SM predictions. A num-⁶¹ ber of angular observables in $B^0 \to K^{*0} \mu^+ \mu^-$ decays can be theoretically pre-⁶² dicted, with good control over the relevant form-factor uncertainties. These ⁶³ observables include the forward-backward asymmetry of the dimuon system, ⁶⁴ A_{FB} , and the fraction of longitudinal polarisation of the K^{*0} , F_{L} , as a func-⁶⁵ tion of the dimuon invariant mass-squared (q^2) . This pair of observables has ⁶⁶ previously been measured by LHCb with 370 pb^{-1} [\[2\]](#page-204-1)[\[3\]](#page-204-2) of integrated lumi-⁶⁷ nosity and by BaBar [\[4\]](#page-204-3), Belle [\[5\]](#page-204-4) and CDF [\[6\]](#page-204-5)[\[7\]](#page-204-6). A preliminary result has ⁶⁸ already been presented by LHCb with 1 fb^{-1} [\[8\]](#page-204-7).

 δ In the SM, $A_{\rm FB}$ varies as a function of q^2 and changes sign at a well defined ⁷⁰ point, q_0^2 . This zero-crossing point comes from the interplay between the \mathcal{O}_7 ⁷¹ (electromagnetic penguin) operator, which dominates as $q^2 \to 0$, and \mathcal{O}_9 and σ_2 \mathcal{O}_{10} (the vector and axial-vector) operators, which dictate the behaviour at π_3 high- q^2 . In the SM the zero-crossing point is predicted to be [\[9\]](#page-204-8):

$$
q_{0,\text{S.M.}}^2 = 3.97_{\underbrace{-0.03}_{\text{F.F.}}}^{0.03} \underbrace{^{S.L.}_{+0.09}}_{S.D.}^{0.29} \text{GeV}^2/c^4
$$

⁷⁴ where the three uncertainties come from: the uncertainty on the form-factors ⁷⁵ (F.F.); the uncertainty on the unknown, 'sub-leading' (S.L.), Λ/m_b correc-⁷⁶ tions; and the uncertainty on the short distance parameters (S.D.), including τ_7 the uncertainty on m_t and m_W and on the scale- μ .

 A_{FB} and F_L can be extracted from fits to the angular distribution of the ⁷⁹ muons, kaon and pion from the dimuon and K^{*0} decays. Two additional 80 observables can be extracted from a fit to the data if the angle, ϕ , between ⁸¹ the decay planes of the dimuon and the K^{*0} systems in the B^0 rest frame, is ⁸² included. These observables are A_T^2 , the asymmetry between the transverse ⁸³ K^{*0} amplitudes and A_{Im} , formed from the imaginary components of the \mathcal{L}_{44} transversity amplitudes of the K^{*0} [\[10\]](#page-204-9). The four angular observables are ⁸⁵ discussed in greater detail later in this note. A_T^2 in particular can have

⁸⁶ large sensitivity to the presence of new virtual particles that can modify the ⁸⁷ contribution from right-handed currents $(\mathcal{C}'_7, \mathcal{C}'_9$ and $\mathcal{C}'_{10})$. The observable $S_3 = \frac{1}{2}$ ⁸⁸ $S_3 = \frac{1}{2}(1 - F_L)A_T^2$ is sometimes used in literature instead of A_T^2 [\[11\]](#page-204-10). It has ⁸⁹ been shown in several papers [\[10,](#page-204-9) [12\]](#page-205-0) that hadronic uncertainties cancel out, ⁹⁰ to a certain extent, when ratios of observables with the same form factor ⁹¹ dependence are used. The observable A_T^2 is an example of these 'clean' ⁹² observables. Other observables are $A_T^{Re} = (4/3) \times A_{FB}/(1 - F_L)$ and $A_T^{Im} =$ $2 \times A_{Im}/(1 - F_L)$. We will refer to the 'clean' set of observables A_T^2 , A_T^{Im} 93 ⁹⁴ and A_T^{Re} as transverse observables. The different choices of variable will be ⁹⁵ discussed in much greater detail later in this document.

⁹⁶ 1.2 Analysis strategy

 The analysis strategy follows that outlined in Ref. [\[13\]](#page-205-1). A cut based pre- selection and multivariate selection are performed to reject combinatorial background (Sec. [3\)](#page-15-0). Specific peaking backgrounds are then rejected using 100 mass and particle identification criteria (Sec. [3.4\)](#page-17-0). The q^2 regions which are 101 dominated by J/ψ and $\psi(2S)$ resonances, which are difficult to be treated theoretically, are removed (Sec. [3.4\)](#page-17-0). The effect of the event reconstruction, trigger and candidate selection on the angular distributions of the B^0 103 daughters is then accounted for by performing an acceptance correction us- ing simulated events (Sec. [11\)](#page-57-0). The simulation used has a set of data-derived corrections applied which remove the effect of data-simulation differences 107 which are observed in control channels (see Sec. [10\)](#page-55-0). Finally, in each q^2 bin, a fit is made to the angular distribution of the daughter particles (the kaon, 09 pion and the muons) and the $K^+\pi^-\mu^+\mu^-$ invariant mass to separate signal and background and to estimate the angular observables (Secs. [4](#page-21-0) and [9\)](#page-48-0). The angular basis is defined such that CP averaged quantities are measured throughout unless explicitly stated.

113 The decay $B^0 \to K^{*0} J/\psi$ is used throughout the analysis as a high statis-¹¹⁴ tics control channel, both for branching fraction normalisation and for val-¹¹⁵ idating the acceptance correction and the fitting procedure. $B^0 \to K^{*0} J/\psi$ ¹¹⁶ events are selected using the same trigger, stripping and offline selection re-117 quirements as the signal, but with the J/ψ -veto reversed to reject $B^0 \rightarrow$ ¹¹⁸ $K^{*0}\mu^+\mu^-$ candidates.

119 In summary, this analysis note covers four separate analyses of the $B^0 \rightarrow$ ¹²⁰ $K^{*0}\mu^+\mu^-$ data set. These are:

¹²¹ 1. a measurement of the differential branching fraction of 122 $B^0 \to K^{*0} \mu^+ \mu^-$ in bins of q^2 ;

¹Charge conjugation is implied throughout, unless explicitly stated otherwise.

- 22. a measurement of A_T^2 , A_T^{Re} , A_T^{Im} (or equivalently S_3 , A_{FB} and S_9) and F_L in bins of $q²$;
- 3. a measurement of A_9 , a T-odd CP asymmetry between B^0 and $\overline{B}{}^0$ decays;
- 4. a measurement of the zero-crossing point of A_{FB} from an "unbinned counting experiment".

 The measurement of the differential branching fraction is described in Sec. [7.](#page-29-0) The extraction of the angular observables is described in Sec. [9.](#page-48-0) The zero-crossing point extraction is described in Sec. [21.](#page-131-0)

 The use of the transverse observables, has implications in the fit, since ¹³³ the transverse variables appear as e.g. $(1 - F_L(q^2))A_T^2(q^2)$ in the angular distribution. This is discussed in more details in Section [8.7.](#page-45-0)

The contribution of a possible S-wave K^+ π^- system interfering with the $K^{*0}(892)$, leading to a modified angular distribution, is also explored and α_{137} discussed in Section ??. In all previous analysis of $B^0 \to K^{*0} \mu^+ \mu^-$, terms 138 proportional to $m_{\mu^+\mu^-}^2/q^2$ in the angular distribution have been completely 139 neglected. For the first time, at low- q^2 an attempt is made to account for the effect of neglecting these terms. This is discussed in detail in Section [17.](#page-102-0) To summarise the main differences with the preliminary results shown at Moriond 2012, are:

- 1. Transverse observables are measured, as well as the non transverse observables already measured for the preliminary result. This is moti- vated by the fact that for transverse observables there is a reduced form factor dependence, making this observables cleaner from the theoreti- cal point of view. A discussion on the observables and the implications can be found in Sec. [8.6](#page-44-0) and Sec. [8.7.](#page-45-0)
- 2. The T-odd asymmetry A_9 is measured.
- 150 3. The S-wave contribution is estimated using the asymmetry in $\cos \theta_K$, and added as systematic. This is described in Sec. [16.](#page-97-0)
- 4. The effect of the threshold terms, arising from non-zero lepton masses, are considered in the lowest q^2 bin. A correction is applied and de-scribed in Sec. [17.](#page-102-0)
- 5. The Feldman-Cousins method is used to evaluate the uncertainty on the observables, in contrast with the MINOS error used for the preliminary result. This is described in Sec. [15.](#page-75-0)

 6. The statistical uncertainty on the zero-crossing point is reduced. Due to a wrong behaviour of the code that calculated the statistical uncertainty on the zero-crossing point for the preliminary result, the weights were not included in the computation.

162 1.3 Data sets

 $_{163}$ This analysis is based on data corresponding to 1 fb^{-1} of integrated lumi- nosity collected by the LHCb detector in 2011. Candidates have been re- constructed with Reco 12 and stripped with Stripping 17. The multivariate ¹⁶⁶ selection described in Sec. [3.3](#page-15-3) has been tuned using 36 pb^{-1} of integrated luminosity from Reco 08 collected by LHCb in 2010. The data used to tune the multivariate selection is not used in the subsequent analysis. The multi-variate selection is the same as described in Ref. [\[2\]](#page-204-1).

 The signal acceptance correction is evaluated using 50 M fully simulated $B^0 \to K^{*0} \mu^+ \mu^-$ Monté Carlo (MC) events from MC10. These events have been generated as a phase-space decay, neglecting the physics in the angular $_{173}$ distribution. In addition samples of $\mathcal{O}(1 M)$, fully simulated, exclusive decays from MC10 are used to understand the contribution of peaking backgrounds to the final analysis.

 $_{^{176}}$ 2 Mass windows and q^2 -binning

¹⁷⁷ This section describes the K^+ π⁻ $\mu^+\mu^-$ and K^+ π⁻ mass windows used in 178 the analysis. It also describes the choice of q^2 -binning.

 179 2.1 Definition of mass windows used in the analysis

180 Candidates are only considered for the analysis if they have a $K^+\pi^-\mu^+\mu^-$ in-¹⁸¹ variant mass $m_{K^+\pi^-\mu^+\mu^-} > 5150 \,\text{MeV}/c^2$ and a $K^+\pi^-$ invariant mass 792 < ¹⁸² $m_{K^+\pi^-}$ < 992 MeV/ c^2 (±100 MeV/ c^2 from the nominal K^{*0} mass). Candi-¹⁸³ dates are considered as being in a 'signal' mass window if the $K^+\pi^-\mu^+\mu^-$ ¹⁸⁴ invariant mass is in the range 5230 $\langle m_{K^+\pi^-\mu^+\mu^-} \rangle \langle 5330 \text{ MeV}/c^2$. The term upper sideband is used to refer to events with $K^+\pi^-\mu^+\mu^-$ invariant ¹⁸⁶ masses 5350 $< m_{K^+\pi^-\mu^+\mu^-} < 5800$ MeV/ c^2 . The term lower sideband is used ¹⁸⁷ to refer to events with $K^+\pi^-\mu^+\mu^-$ invariant masses 5150 $< m_{K^+\pi^-\mu^+\mu^-}$ 188 $5230 \,\text{MeV}/c^2$.

 2.2 $\frac{189}{2}$ 2.2 q^2 -Binning

190 The choice of q^2 binning remains the same for this analysis as described in 191 Ref. [\[13\]](#page-205-1), apart for the treatment of the first q^2 -bin, which is now restricted to $q^2 > 0.1 \,\text{GeV}^2/c^4$. This is motivated by the fact that the below $0.1 \,\text{GeV}^2/c^4$ 192 ¹⁹³ the efficiency to reconstruct, trigger and select the $B^0 \to K^{*0} \mu^+ \mu^-$ decay ¹⁹⁴ varies rapidly (making it difficult to appropriately model the acceptance). ¹⁹⁵ Requiring that $q^2 > 0.1 \,\text{GeV}^2/c^4$ also significantly reduces the impact of 196 the threshold terms that appear in the angular distribution at low- q^2 . The

 q^2 binning is shown in Table. [1.](#page-14-0) This binning scheme was designed to match ¹⁹⁸ the binning used by BaBar, Belle and CDF. Due to limited MC-statistics the upper q^2 bin is limited to the range $16.0 < q^2 < 19.0 \,\text{GeV}^2/c^4$ and is ²⁰⁰ not extended to the kinematic limit. Results will also be quoted in the ₂₀₁ theoretically favoured $1 < q^2 < 6 \text{ GeV}^2/c^4$ range, which is far enough from ₂₀₂ the photon pole (at $q^2 \sim 0$) and the $c\bar{c}$ resonances for QCD factorisation ²⁰³ to be used reliably. It is also relatively free from contributions from light-²⁰⁴ resonances. Further, for $q^2 > 1 \text{ GeV}^2/c^4$, the threshold terms in the angular ²⁰⁵ distribution can be neglected.

Binning	q^2 region (GeV ² / c^4)
q^2 -binning scheme	$0.1 < q^2 < 2$
	$2 < q^2 < 4.3$
	$4.3 < q^2 < 8.68$
	$10.09 < q^2 < 12.86$
	$14.18 < q^2 < 16$
	$16 < q^2 < 19$
	$1 < a^2 < 6$

Table 1: Definition of q^2 bins used in the analysis. These include six q^2 bins covering $0.1 < q^2 < 19 \text{ GeV}^2/c^4$ and the theoretically favoured region $1 < q^2 < 6 \ GeV^2/c^4$.

3 Selection

 The offline event selection procedure follows that described in Ref. [\[14\]](#page-205-2). The only significant difference is an introduction of a cut on the transverse mo- mentum of the four daughter particles (the kaon, pion and two muons), with $p_T > 250 \text{ MeV}/c$, at the stripping level. This cut has a small impact on the input and output of the subsequent multivariate selection (based on a BDT). The stripping and offline selections are described briefly below. In addition to the MVA selection, cuts are applied to remove specific "peaking" backgrounds. These criteria are detailed in Sec. [3.4](#page-17-0) and have been updated ²¹⁵ from the 0.37 fb⁻¹ analysis [\[2\]](#page-204-1) to reflect changes in the particle identification performance between Reco 10 and Reco 12.

 $_{217}$ 3.1 Trigger

 Candidates are only considered for the offline analysis if they have passed through the following triggers: L0Muon at L0; Hlt1TrackAllL0 or

Hlt1TrackMuon at HLT 1; Hlt2Topo[2,3,4]BodyBBDT,

 Hlt2TopoMu[2,3,4]BodyBBDT, Hlt2SingleMuon or Hlt2DiMuonDetached at HLT 2. At all stages the offline-candidates are required to be TOS, i.e. the trigger decision is due solely to the presence of the candidate in the event. The trigger requirements are unchanged from the preliminary result with $_{225}$ 1 fb⁻¹ [\[14\]](#page-205-2). This choice of triggers only selects candidates in events with an 226 SPD multiplicity < 600 .

3.2 Stripping and pre-selection

 This analysis uses candidates from the StrippingBd2KstarMuMu stripping line in Reco 12-Stripping 17. The cut based selection used in the strip- ping is close to that of the previous analysis (Reco 10-Stripping 13b). The 231 only difference is a $p_T > 250$ MeV/c cut on the muons, kaon and pion. The stripping selection requirements are included for reference in Table. [2.](#page-16-0)

 Candidates from the stripping line are required to pass a further cut- based pre-selection (prior to the multivariate selection) to remove patholog-ical events. These requirements are summarised in Table. [3.](#page-16-1)

3.3 Multivariate Offline Selection

 The combinatorial background is reduced offline using a multivariate classi- fier: a boosted decision tree (BDT). The training and validation of the BDT is detailed in Ref. [\[14\]](#page-205-2). Briefly, the following information is input to the BDT:

Particle	Selection Requirement
B ⁰	$4850 < m_{K^+\pi^-\mu^+\mu^-} < 5780 \text{ MeV}/c^2$
B^0	DIRA > 0.9999
B ⁰	Vertex $\chi^2/\text{NDOF} < 6$
B^0	IP χ^2 < 16
B^0	FD $\chi^2 > 121$
K^{*0}	$600 < m_{K^+\pi^-} < 2000~{\rm MeV}/c^2$
K^{*0}	Vertex $\chi^2/\text{NDOF} < 12$
K^{*0}	FD $\chi^2 > 9$
$\mu^+\mu^-$	$FD \chi^2 > 9$
$\mu^+\mu^-$	Vertex $\chi^2/\text{NDOF} < 12$
Track	$\chi^2/\text{dof} < 5$
Track	IP $\chi^2 > 9$
Track	$p_{\rm T} > 250 \, \text{MeV}/c^2$
μ^{\pm}	IsMuonLoose True

Table 2: Cut based selection used in StrippingBd2KstarMuMu for Stripping 17.

Particle	Selection Requirement
Track	$0 < \theta < 400$ mrad
Track	KL Distance > 5000
Track Pairs	$\theta > 1$ mrad
$\mu^+\mu^-$	IsMuon True
K	hasRich True
K	$\text{DLL}_{K\pi} > -5$
π	hasRich True
π	$\nDLL_{K_{\pi}} < 25$
PV	$ X - \langle X \rangle < 5$ mm
PV	$ Y - \langle Y \rangle < 5$ mm
РV	$ Z - < Z> < 200$ mm

Table 3: Pre-selection cuts applied to stripped candidates.

- \bullet the B^0 pointing to the primary vertex, flight-distance and IP χ^2 with respect to the primary vertex, p_T and vertex quality (χ^2) ;
-
- the K^{*0} and dimuon flight-distance and IP χ^2 with respect to the pri- $_{243}$ mary vertex (associated to the B^0), p_T and vertex quality (χ^2) ;
-
- the impact parameter χ^2 and the $\Delta LL(K \pi)$ and $\Delta LL(\mu \pi)$ of the

²⁴⁵ four final state particles.

²⁴⁶ When training the BDT selection, $B^0 \to K^{*0} J/\psi$ candidates from the 2010 ²⁴⁷ data were used as a proxy for the signal and $B^0 \to K^{*0} \mu^+ \mu^-$ candidates ²⁴⁸ from the upper mass sideband were used as a background sample. Half of the candidates were used for training (corresponding to 18 pb^{-1}) and the ²⁵⁰ remaining half used to test the performance of the BDT.

251 3.4 Specific background and vetoes

252 The decays $B^0 \to K^{*0} J/\psi$ and $B^0 \to K^{*0} \psi(2S)$ are treated separately in ²⁵³ the analysis due to the different underlying physics that contributes in the 254 decays. Event in the regions 2946 $\langle m_{\mu^+\mu^-} \rangle$ < 3176 MeV/ c^2 and 3586 \langle ²⁵⁵ $m_{\mu^+\mu^-} < 3766 \text{ MeV}/c^2 \text{ for } B^0 \to K^{*0}J\!/\psi \text{ and } B^0 \to K^{*0}\psi(2S) \text{ are removed}$ $_{\rm z56}$ from the analysis. In addition the vetoes were extended to the region 2796 $<$ 257 $m_{\mu^+\mu^-}$ < 3176 MeV/ c^2 and 3436 < $m_{\mu^+\mu^-}$ < 3766 MeV/ c^2 for the events ²⁵⁸ $m_{K\pi\mu^+\mu^-}$ < 5230 MeV/ c^2 , to account for the radiative tail of the J/ ψ decay. The vetoes were also extended to the region $3176 < m_{\mu^+\mu^-} < 3201 \,\text{MeV}/c^2$, ²⁶⁰ to account for a misreconstructed tail of the J/ψ decay. This is shown in ²⁶¹ Fig. [1.](#page-18-0) Combinatorial background events are also removed by extending ²⁶² the veto regions. In order to correct for this, the remaining candidates in 263 the bins of q^2 adjacent to the J/ ψ and $\psi(2S)$ in the affected $K^+\pi^-\mu^+\mu^$ invariant masses regions are re-weighted according to the fraction of the q^2 264 ²⁶⁵ bin removed by the extending the vetoes. This re-weighting assumes that 266 the background candidates are uniformly distributed in q^2 within the q^2 bin. ²⁶⁷ This assumptions seems to hold well at the current level of precision.

²⁶⁸ In addition a number of specific backgrounds were considered in this ²⁶⁹ analysis and the following additional vetoes have been applied:

- e^{270} **•** B^0 → $K^*\mu^+\mu^-$ with $K \leftrightarrow \pi$ misidentification. This is dealt with by requiring $KDLL_{K\pi} + 10 < \pi DLL_{K\pi}$ for events where the $K^+\pi^-$ mass ²⁷² is in the range $792 < m_{K(-\pi)\pi(-K)} < 992$ after swapping the kaon and ²⁷³ pion mass hypothesis.
-

 $B^0 \to J/\psi K^*$ where a muon is misidentified and swapped with the pion ²⁷⁵ or kaon. This background is removed by rejecting candidates where

Figure 1: The $K\pi\mu^+\mu^-$ versus $\mu^+\mu^-$ invariant mass distribution of $B^0 \rightarrow$ $K^{*0}\mu^+\mu^-$ candidates that lie close to the J/ψ mass in the data (left) and in $B^0 \to K^{*0}J/\psi$ MC (right). The charmonium veto regions are indicated by the red lines. The yellow line indicates the extent of the lower mass sideband used for the angular analysis.

276 the pion/kaon passes the IsMuon requirements or has $DLL_{\mu\pi} > 5.0$ ²⁷⁷ if the $K^+\mu^-$ or $\pi^-\mu^+$ mass is in the range [3036, 3156] MeV/c², after α ²⁷⁸ exchanging the π/K with the muon mass hypothesis.

- $B_s \to \phi \mu^+ \mu^-$ where a K from the ϕ -meson is misidentified as a π . Such ²⁸⁰ events are removed by applying the following cuts for events that fall 281 in the region $5321 < m_{KK\pi\pi} < 5411 \text{ MeV}/c^2$: $\pi DLL_{K\pi} > -50$ for events in the region $1010 < m_{KK} < 1030$ MeV/c² and $\pi DLL_{K\pi} > 20$ for events in the region $1030 < m_{KK} < 1075 \text{ MeV}/c^2$.
- ${}_{284}$ $B^+ \to K^+ \mu^+ \mu^-$ combined with a soft pion coming from elsewhere in ²⁸⁵ the event. This background peaks on the right of the signal window, ²⁸⁶ in the upper mass sideband, and is removed by vetoing the region of ²⁸⁷ $K^+\mu^+\mu^-$ invariant mass $5220 < m_{K\mu^+\mu^-} < 5340 \text{ MeV}/c^2$.
- 288 $\bullet \ \Lambda_b \rightarrow pK^-\mu^+\mu^-$ where either the proton is identified as a pion or the ²⁸⁹ proton is identified as a kaon and the kaon as a pion. This background ²⁹⁰ is removed by rejecting candidates with $\pi/KDL_n > 20$ and both ²⁹¹ $5575 < m_{K^+p^-\mu^+\mu^-} < 5665 \,\text{MeV}/c^2 \text{ and } 1490 < m_{K^+p^-} < 1550 \,\text{MeV}/c^2,$ ²⁹² after exchanging the pion mass with the proton (or pion with kaon, ²⁹³ kaon with proton) mass hypothesis.

 P eaking backgrounds from $B^0 \to \rho^0 \mu^+ \mu^-$, $B^+ \to K^{*+} \mu^+ \mu^-$, $B_s \to$ ²⁹⁵ $f_0\mu^+\mu^-$ and $B^0_s \to K^{*0}\mu^+\mu^-$ have also been studied using simulated events ²⁹⁶ (correcting for the PID performances observed in data) and found to be ²⁹⁷ negligible.

Partially reconstructed $B \to K^+\pi^-\mu^+\mu^- + X$ where one or more parti-²⁹⁹ cles from a B-meson decay are not reconstructed are removed by requiring ³⁰⁰ that candidates have an invariant mass $m_{K^+\pi^-\mu^+\mu^-} > 5150 \text{ MeV}/c^2$. Finally ³⁰¹ cascade decays where B^0 decays semileptonically to a D meson that in turn ³⁰² decays semileptonically, sits in the lower mass sideband. This background ³⁰³ is largely removed by requiring $m_{K^+\pi^-\mu^+\mu^-} > 5150 \text{ MeV}/c^2$. This has been ³⁰⁴ validated using older MC studies [\[15\]](#page-205-3). Further it has been checked that the ³⁰⁵ angular distribution of candidates below the signal mass window, but with ³⁰⁶ $m_{K^+\pi^-\mu^+\mu^-} > 5150 \text{ MeV}/c^2$, is consistent with those appearing in the upper ³⁰⁷ mass sideband.

308 The background from a possible broad S-wave $K^+\pi^-$ system or from the $\frac{1}{209}$ tail of $K_0^*(1430)$ is discussed in Sec [16.](#page-97-0)

 The level of peaking background remaining after applying the full selec- tion requirements and vetoes, is given in Table [4.](#page-20-1) These backgrounds are ignored in the subsequent angular analysis, but are including in the branch-ing fraction determination. A systematic uncertainty is assigned to the result

³¹⁴ of the angular analysis to reflect the assumption that these backgrounds can ³¹⁵ be neglected.

316 The level of $\Lambda_b \to pK^-\mu^+\mu^-$ was estimated using $\Lambda_b \to pK^-J/\psi$ events ³¹⁷ in data. These decays were isolated in data in the upper B mass sideband. ³¹⁸ The level of events inside the B mass window was extracted using the B mass distribution of $\Lambda_b \to pK^-\mu^+\mu^-$ simulated events. From this the ratio 320 of $\Lambda_b \to pK^-J/\psi$ and $B^0 \to K^{*0}J/\psi$ in data in the signal region was found 321 to be approximately 1.5%. Assuming the same ratio for the $\mu^+\mu^-$ mode, Δ_{322} the level of $\Lambda_b \to pK^-\mu^+\mu^-$ events is 1.5% of the signal yield. The veto applied (above) rejects 50% of simulated $\Lambda_b \to pK^-\mu^+\mu^-$ events, reducing $_{324}$ this peaking background to the level of $\approx 0.75\%$.

Background	Background Level $(\%)$	Signal Loss $(\%)$
$\overline{B^0} \to K^{*0} \mu^+ \mu^-$ (with $K \leftrightarrow \pi$)	0.85 ± 0.02	0.11
$B^0 \to K^{*0} J/\psi$ (with $\pi \leftrightarrow \mu$)	0.27 ± 0.08	0.05
$B^0 \to K^{*0} J/\psi$ (with $K \leftrightarrow \mu$)	0.00 ± 0.00	0.03
$B^0_s \rightarrow \phi \mu^+ \mu^-$	1.23 ± 0.50	0.32
$B^+\rightarrow K^+\mu^+\mu^-$	0.14 ± 0.03	
$\Lambda_b \rightarrow pK^- \mu^+ \mu^-$	0.75 ± 0.15	0.47
Total	3.24 ± 0.53	0.98

Table 4: The level of exclusive peaking backgrounds with respect to the $B^0 \to K^{*0} \mu^+ \mu^-$ signal (as scaled from the relative efficiency in MC and the PDG branching fraction).

325 3.5 Multiple Candidates

 After applying the multivariate selection and peaking background vetoes it is still possible to have multiple candidates in the final data sample. This in- cludes situations where the K and the π are swapped (as only a loose PID re- quirement is made). Multiple candidates surviving the selection were treated by weighting each candidate by the inverse of the number of candidates in 331 that event. After the selection 98% (98%) of events in the $B^0 \to K^{*0} \mu^+ \mu^ (332 \left(B^{0} \rightarrow K^{*0} J/\psi \right)$ signal mass window have just one candidate. In the upper mass sideband, 98% (97%) of events have just one candidate.

 $_{{}^{\rm 334}}$ 4 $\,$ K^+ $\pi^ \mu^+\mu^-$ and K^+ π^- invariant mass dis-³³⁵ tributions

336 4.1 $K^+\pi^-\mu^+\mu^-$ invariant mass distribution

337 The mass model used for the signal and background is explored using $B^0 \rightarrow$ 338 $K^{*0}J/\psi$ events and $B^0 \to K^{*0}\mu^+\mu^-$ MC. The background mass distribu-³³⁹ tion is parametrised by an exponential to model the combinatorial back-340 ground. In the $B^0 \to K^{*0} \mu^+ \mu^-$ analysis candidates are only considered ³⁴¹ if they have $m_{K^+\pi^-\mu^+\mu^-} > 5150 \text{ MeV}/c^2$. In this section, this requirement ³⁴² has been relaxed to highlight the contribution from partially reconstructed ³⁴³ B decays. A RooExpAndGauss model is used to model this background ³⁴⁴ shape, describing an exponential rise to a threshold with a Gaussian fall ³⁴⁵ off above the threshold. This is empirically is seen to describe well the data f_{346} for $m_{K^+\pi^-\mu^+\mu^-} < 5150$ MeV/ c^2 .

³⁴⁷ The signal mass distribution is parametrised by the sum of two Crystal ³⁴⁸ Ball shapes [\[16\]](#page-205-4), with both tails on the left hand side of the distribution. 349 The nominal B^0 mass, μ_{B^0} , and shape parameters α and n are assumed ³⁵⁰ to be common between the two crystal ball shapes, but the widths of the 351 distributions σ_1 and σ_2 are allowed to float in the fit to $B^0 \to K^{*0} J/\psi$. ³⁵² The signal shape parameters are then fixed to their best fit values when ³⁵³ fitting the invariant mass distribution of $B^0 \to K^{*0} \mu^+ \mu^-$ decays. Again, ³⁵⁴ the choice of signal model is empirical and we use the minimal model that 355 well describes the mass distribution in data and in SM $B^0 \to K^{*0} \mu^+ \mu^-$ MC. ³⁵⁶ The $K^+\pi^-\mu^+\mu^-$ invariant mass distribution of $B^0 \to K^{*0}J/\psi$ decays in the J/ψ mass window is shown in Fig. [2.](#page-22-0) A fit to the data with the full double 358 Crystal Ball model is overlaid. For $B^0 \to K^{*0} J/\psi$ a second signal component ³⁵⁹ is included for $B_s^0 \to \overline{K}^{*0} J/\psi$ decays that is suppressed by f_s/f_d and a CKM ³⁶⁰ factor. In the fit the fraction of B_s^0 decays is constrained from Ref. [\[17\]](#page-205-5) to be 361 0.7 \pm 0.2%. This B_s^0 contribution is not included in the fit to $B^0 \to K^{*0} \mu^+ \mu^-$.

 \sum_{362} The q²-dependence of the $K^+\pi^-\mu^+\mu^-$ invariant mass distribution is ex-³⁶³ plored using SM MC. There is a small difference in the signal mass resolution ³⁶⁴ between low and high- q^2 . Differences are visible at the level of 5%, but there ³⁶⁵ is no dramatic worsening of the resolution in q^2 . This is treated as a source ³⁶⁶ of systematic.

 $_{367}$ 4.2 $K^+\pi^-$ invariant mass distribution

³⁶⁸ Fig. [3](#page-23-0) shows the two dimensional, $K^+\pi^-\mu^+\mu^-$ versus $K^+\pi^-$ invariant mass 369 distribution for $B^0 \to K^{*0} \mu^+ \mu^-$ candidates and J/ψ candidates. The contri-

370 bution from the $K^{*0}(892)$ is visible in both figures as are contributions from $_{371}$ higher K^* states around the $K^*(1430)$. There is also clear evidence for a ₃₇₂ broad structure that extends between the $K^{*0}(892)$ and the $K^{*}(1430)$ that 373 can be partially attributed to the tails of the $K^{*0}(892)$ and the higher states 374 and to the presence of a $K\pi$ S-wave. No attempt is made here to disentangle 375 the overlapping higher mass states. The effect of a $K\pi$ S-wave is discussed ³⁷⁶ later.

Figure 2: The $K^+\pi^-\mu^+\mu^-$ invariant mass of $B^0 \to K^{*0}J/\psi$ candidates fitted with a: double Crystal Ball shape for the signal component (thin-green line) and $B_s^0 \to \overline{K}^{*0} J/\psi$ (long-dashed purple line); an exponential shape to model combinatorial background (dotted-red line) and a RooExpAndGauss shape to model low-mass partially reconstructed backgrounds (dashed-yellow line). The full fit model (blue line) has a $P(\chi^2) = 6\%$.

Figure 3: The $K^+\pi^-\mu^+\mu^-$ versus $K^+\pi^-$ invariant mass distribution for candidates outside the J/ψ and $\psi(2S)$ vetoes (left) and for candidates in the J/ψ veto region (right). The solid lines represent the signal $K^+\pi^-\mu^+\mu^-$ and the $K^+\pi^-$ mass window used in the subsequent analysis.

377 5 Event yields

378 The $K^+\pi^-\mu^+\mu^-$ invariant mass distribution of $B^0 \to K^{*0}J/\psi$ candidates is ³⁷⁹ shown in Fig. [4.](#page-25-0) The same selection, including the peaking vetoes (apart for 380 the J/ψ veto) are applied to the $B^0 \to K^{*0} J/\psi$ and to the signal. The yield ³⁸¹ of $B^0 \to K^{*0}J/\psi$ in about 1fb⁻¹ is 101407±355 events, which is in agreement ³⁸² with what is expected. The line-shape from a fit to the distribution is then 383 used to estimate the $B^0 \to K^{*0} \mu^+ \mu^-$ yield in the full q^2 window and in each ³⁸⁴ of the six bins used in the angular analysis. In the fit to $B^0 \to K^{*0} \mu^+ \mu^-$, the 385 shape parameters are floated, but constrained to the result of the fit to $B^0 \rightarrow$ 386 $K^{*0}J/\psi$. This implicitly assumes that the width of the signal distribution is $_{387}$ independent of q^2 (see Sec. [4\)](#page-21-0). The effect from multiple candidates has been ³⁸⁸ neglected here.

389 The $K^+\pi^-\mu^+\mu^-$ invariant mass distribution, after applying the vetoes 390 for peaking backgrounds, of $B^0 \to K^{*0} \mu^+ \mu^-$ candidates is shown in Fig. [5.](#page-26-0) 391 The $K^+\pi^-\mu^+\mu^-$ invariant mass distributions of the six q^2 bins are shown in Figs. [6\(](#page-27-0)a)-(f). Table. [5](#page-25-1) lists the signal and background yield in a $\pm 50 \,\text{MeV}/c^2$ 392 393 signal mass window in each of the q^2 -bins. Note, the uncertainty on the ³⁹⁴ background yield appearing in the table is smaller than the square-root of ³⁹⁵ the background yield as it is scaled appropriately from the background yield, $_{396}$ in the full mass window. In total, 883 signal candidates are seen with 0.1 < ³⁹⁷ $q^2 < 19 \,\text{GeV}^2/c^4$. The results of these fits are provided for reference only, they ³⁹⁸ are not used in the angular analysis, where the inclusion of the signal angular ³⁹⁹ distribution and re-weighting of the candidates for the detector acceptance ⁴⁰⁰ can impact the signal-to-background ratio.

 $_{401}$ The yield has scaled as expected from the 0.37 fb⁻¹ analysis where 337 ⁴⁰² signal candidates were observed in the signal mass window.

(GeV^2/c^4) range	Signal Yield	Background Yield
$0.1 < \overline{q^2 < 2}$	139.9 ± 13.4	26 ± 3.7
$2 < q^2 < 4.3$	72.6 ± 10.8	35.6 ± 4.2
$4.3 < q^2 < 8.68$	270.8 ± 18.9	56 ± 5.5
$10.09 < q^2 < 12.86$	168.1 ± 15	39 ± 4.5
$14.18 < q^2 < 16$	115.1 ± 11.7	14.2 ± 2.9
$16 < q^2 < 19$	116.3 ± 12.5	23.1 ± 3.6
$1 < q^2 < 6$	197 ± 17.1	72.2 ± 5.9
$0.1 < q^2 < 19$	883.3 ± 34.3	193.8 ± 10.2

Table 5: The signal and background yields resulting from a fit to the $K^+\pi^-\mu^+\mu^-$ invariant mass distributions of $B^0 \to K^{*0}\mu^+\mu^-$ candidates in the six q^2 -bins used in the analysis, the theoretically 'favoured' $1 < q^2 <$ $6 \text{ GeV}^2/c^4$ range and in the full q^2 -range.

Figure 4: The $K^+\pi^-\mu^+\mu^-$ invariant mass distribution of $B^0 \to K^{*0}J/\psi$ candidates in the data after the full selection has been applied. The fitted signal (green dotted) and background shapes are is described in Sec. [4.](#page-21-0) The left plot requires candidates in the di-mu mass region $3036 < m_{J/\psi} < 3156 \text{ MeV}/c^2$ as in the previous analysis. The right plot applies the inverse of the J/ψ veto region, in order to fully capture the radiative tail. The background model is modified to account for the additional combinatorial background.

Figure 5: The $K^+\pi^-\mu^+\mu^-$ invariant mass distribution of $B^0 \to K^{*0}\mu^+\mu^$ candidates, in the range $0.1 < q^2 < 19 \,\text{GeV}^2/c^4$, in the data after the full selection has been applied. The fitted signal (green dotted) and background shapes are is described in Sec. [4.](#page-21-0)

Figure 6: The $K^+\pi^-\mu^+\mu^-$ invariant mass distribution of $B^0 \to K^{*0}\mu^+\mu^$ candidates in the data in the six q^2 -bins used in the analysis. The fitted signal (green dotted) and background shapes are is described in Sec. [4.](#page-21-0) The signal has a significance greater than 5 "sigma" in all six q^2 -bins.

 $_{\text{\tiny 403}}$ 6 q^2 spectrum of signal candidates

⁴⁰⁴ The q^2 spectrum of signal candidates is unfolded using the $sPlot$ technique 405 with the $K^+\pi^-\mu^+\mu^-$ invariant mass as the discriminating variable. The ⁴⁰⁶ resulting distribution is shown in Fig. [7.](#page-28-1)

Figure 7: The background subtracted q^2 distribution of $B^0 \to K^{*0} \mu^+ \mu^-$ signal candidates obtained using the $sPlot$ technique. The dashed lines indicate the boundaries between the different q^2 bins used in this analysis.

⁴⁰⁷ If the background subtraction is performed independently in the q^2 bins, ⁴⁰⁸ the average q^2 value of the signal in each q^2 bin is given in Table. [6.](#page-28-2)

	$\langle q^2 \rangle$
$0.10 < q^2 < 2.00 \,\text{GeV}^2/c^4$	$0.8 \,\text{GeV}^2/c^4$
$2.00 < q^2 < 4.30 \,\text{GeV}^2/c^4$	$3.1 \,\text{GeV}^2/c^4$
$4.30 < q^2 < 8.68 \,\text{GeV}^2/c^4$	6.7 GeV ² / c^4
$10.09 < q^2 < 12.86 \,\text{GeV}^2/c^4$	$11.3 \,\text{GeV}^2/c^4$
$14.18 < q^2 < 16.00 \,\text{GeV}^2/c^4$	$15.0 \,\text{GeV}^2/c^4$
$16.00 < q^2 < 19.00 \,\text{GeV}^2/c^4$	$17.2 \,\text{GeV}^2/c^4$
$1.00 < q^2 < 6.00 \,\text{GeV}^2/c^4$	$3.5 \,\text{GeV}^2/c^4$

Table 6: The background subtracted mean q^2 value of $B^0 \to K^{*0} \mu^+ \mu^-$ signal candidates in the q^2 bins. The values have been obtained using the $sPlot$ technique.

⁴⁰⁹ 7 Differential branching fraction

⁴¹⁰ The differential branching fraction as a function of q^2 , $d\mathcal{B}/dq^2$ receives similar ⁴¹¹ enhancements from "new physics" to the angular observables. However, the ⁴¹² sensitivity to the "new physics" in $d\mathcal{B}/dq^2$, is limited by the large uncertainty (0.30%) on the hadronic form factors.

⁴¹⁴ The partial branching fraction, \mathcal{B}_k , in the q^2 bin can be estimated by ⁴¹⁵ comparing the yield of $B^0 \to K^{*0} \mu^+ \mu^-$ candidates in the q^2 bin to the number 416 of $B^0 \to K^{*0}J/\psi$ candidates in the total sample. The partial branching ⁴¹⁷ fraction is then given by

$$
\mathcal{B}_k = \mathcal{B}(B^0 \to K^{*0} J/\psi) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \times \frac{N_{K^{*0}\mu^+\mu^-}; k}{N_{K^{*0} J/\psi}} \frac{\varepsilon_{K^{*0} J/\psi}}{\varepsilon_{K^{*0}\mu^+\mu^-;k}} ,
$$

⁴¹⁸ where $N_{K^{*0}\mu^+\mu^-;k}$ is the number of $B^0 \to K^{*0}\mu^+\mu^-$ candidates in bin k, ⁴¹⁹ $N_{K^{*0}J/\psi}$, is the number of $B^0 \to K^{*0}J/\psi$ candidates in the full data sam-420 ple and $\epsilon_{K^{*0}J/\psi}/\epsilon_{K^{*0}\mu^+\mu^-;k}$ is the ratio of efficiencies between the two decays. ⁴²¹ This last number would traditionally be take from MC samples. Unfortu-422 nately, whilst $\varepsilon_{K^{*0}J/\psi}$ is known precisely from simulated events, $\varepsilon_{K^{*0}\mu^+\mu^-;k}$ is ⁴²³ poorly known because it depends on the unknown angular distribution and q^2 spectrum.

⁴²⁵ To avoid making any assumption about the unknown angular distribution ⁴²⁶ of the $B^0 \to K^{*0} \mu^+ \mu^-$ decay, event-by-event weights (see Sec. [11\)](#page-57-0) are used ⁴²⁷ to estimate the average efficiency of signal candidates in each q^2 bin. The ⁴²⁸ procedure is described below.

 $_{429}$ 7.1 Determining ${\rm d}{\cal B}/{\rm d}q^2$ using event-by-event weights

430 The yield in each q^2 bin is extracted by using an extended unbinned maximum ⁴³¹ likelihood fit to the $K^+\pi^-\mu^+\mu^-$ invariant mass distribution to the candidates $_{432}$ in the q^2 bin. In this likelihood fit, the candidates are weighted to account ⁴³³ for the detector acceptance in the same manner in which they are for the ⁴³⁴ angular analysis. As in the angular analysis the weights are normalized to ⁴³⁵ be on average one, i.e. that

$$
\sum_{i=0}^{N_k} \alpha_k w_i = N_k \tag{1}
$$

436 where w_i is the event-by-event weight. The factor α used for the normaliza-⁴³⁷ tion of the event weights. The procedure to calculate the partial branching ⁴³⁸ fraction in each bin then consists of the following steps:

• Each event is weighted in the extended likelihood fit to the $K^+\pi^-\mu^+\mu^-$ ⁴⁴⁰ invariant mass;

• The weights are normalised such that the sum of the weights is the num- ϕ_{442} ber of events (scaling the weights by a normalisation factor $\alpha_{K^{*0}\mu^+\mu^-}$);

• The procedure is repeated for $B^0 \to K^{*0} J/\psi$ (with a normalisation 444 factor $\alpha_{K^{*0},J/\psi}$;

⁴⁴⁵ • The differential branching fraction is extracted from the number of ⁴⁴⁶ events that come from the two likelihood fits and the ratio of the nor-⁴⁴⁷ malisation factors.

⁴⁴⁸ In the q^2 bin, \mathcal{B}_k is then given by

$$
\mathcal{B}_k = \mathcal{B}(B^0 \to K^{*0} J/\psi) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \times \frac{N'_{K^{*0}\mu^+\mu^-;k}}{N'_{K^{*0} J/\psi}} \frac{\alpha_{K^{*0} J/\psi}}{\alpha_{K^{*0}\mu^+\mu^-;k}} , \quad (2)
$$

⁴⁴⁹ where $N'_{K^{*0}\mu^+\mu^-;k}$ and $N'_{K^{*0}J/\psi}$ denote the $B^0 \to K^{*0}\mu^+\mu^-$ and $B^0 \to K^{*0}J/\psi$ 450 event yields in the q^2 bin that come from the weighted likelihood fit. ⁴⁵¹ The resulting differential branching fraction in the q^2 bin is then given by

$$
d\mathcal{B} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}
$$

$$
\frac{d\mathcal{B}_k}{dq^2} = \frac{1}{q_{\text{max},k}^2 - q_{\text{min},k}^2} \mathcal{B}_k.
$$

452 The contributions from the decays $B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-$ and $B_s^0 \to \phi \mu^+ \mu^-$ ⁴⁵³ (where one kaon is identified as a pion) are included in the fit, but are fixed ⁴⁵⁴ to the expected level of background from Sec. [3.4.](#page-17-0) $B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-$ is assumed 455 to be at the level of $f_{B_s^0} = 1 \pm 1\% \approx (f_s/f_d)|V_{td}/V_{ts}|^2$ of the signal. $B_s^0 \rightarrow$ ⁴⁵⁶ $\phi\mu^+\mu^-$ at the level of $f_{\phi} = 1.2 \pm 0.5\%$ of the signal. The line-shape of the ⁴⁵⁷ $\overline{B}^0_s \to K^{*0} \mu^+ \mu^-$ is assumed to be the same as the $B^0 \to K^{*0} \mu^+ \mu^-$ signal. ⁴⁵⁸ A template for the shape of the $B_s^0 \to \phi \mu^+ \mu^-$ line-shape has been taken ⁴⁵⁹ from SM MC. The uncertainty on the line-shape of this background is small ⁴⁶⁰ compared to the uncertainty on the yield, therefore no systematic uncertainty ⁴⁶¹ on the shape is considered, but the level of each background is varied within ⁴⁶² its uncertainty.

⁴⁶³ 7.2 Unbinned maximum likelihood fit for the differen-⁴⁶⁴ tial branching fraction

⁴⁶⁵ Summarising the contributions, the log-likelihood is given by:

$$
-\log L = -\sum_{i=0}^{N} \alpha w_i \log \left[\frac{N'_{\text{sig}}}{(1 + f_{\phi} + f_{B_s^0}) N'_{\text{sig}} + N'_{\text{bkg}}} M(m_{K^+\pi^-\mu^+\mu^-} | \sigma_1, \sigma_2, \alpha, n) + \frac{f_{B_s^0} \times N'_{\text{sig}}}{(1 + f_{\phi} + f_{B_s^0}) N'_{\text{sig}} + N'_{\text{bkg}}} M(m_{K^+\pi^-\mu^+\mu^-} | \sigma_1, \sigma_2, \alpha, n) + \frac{f_{\phi} \times N'_{\text{sig}}}{(1 + f_{\phi} + f_{B_s^0}) N'_{\text{sig}} + N'_{\text{bkg}}} F_{\phi}(m_{K^+\pi^-\mu^+\mu^-}) + \frac{N'_{\text{bkg}}}{(1 + f_{\phi} + f_{B_s^0}) N'_{\text{sig}} + N'_{\text{bkg}}} E(m_{K^+\pi^-\mu^+\mu^-} | p_0) \right] - \log P(N | (1 + f_{\phi} + f_{B_s^0}) N'_{\text{sig}} + N'_{\text{bkg}})
$$
\n(3)

466 where $M(m_{K^+\pi^-\mu^+\mu^-}|\sigma_1,\sigma_2,\alpha,n)$ is the double crystal ball mass model for ⁴⁶⁷ the signal described above, $E(m_{K^+\pi^-\mu^+\mu^-}|p_0)$ is an exponential model for the α ₆₈ combinatorial background, $N'_{\text{sig.}}$ is the effective number of signal candidates ⁴⁶⁹ and N'_{bkg} the effective number of background candidates. F_{ϕ} , is the template ⁴⁷⁰ for the $\tilde{B}_s^0 \to \phi \mu^+ \mu^-$ line-shape. The $B_s^0 \to K^{*0} \mu^+ \mu^-$ line-shape is fixed to be ⁴⁷¹ the same as the signal line-shape, but is shifted in $K^+\pi^-\mu^+\mu^-$ invariant mass 472 by the $B_s^0 - B^0$ mass difference. The weights are normalised as described ⁴⁷³ above.

 $_{\rm 474}$ $\,7.3$ $\,$ Results from fits to the $1\,{\rm fb}^{-1}$ data sample

⁴⁷⁵ The differential branching ratio as a function of q^2 is summarised in Table [7.](#page-33-2) ⁴⁷⁶ It is consistent with previous results (from LHCb, the B-factories and CDF) ⁴⁷⁷ and with the SM prediction.

Figure 8: Mass fit to the invariant $K^+\pi^-\mu^+\mu^-$ mass used to determine the differential branching ratio. The mass fit is described in more detail in Section [4.](#page-21-0)

q^2 -bin	$d\mathcal{B}/dq^2(10^{-7}c^4/\overline{GeV^2})$
$0.10 < q^2 < 2.00 \,\text{GeV}^2/c^4$	0.61 ± 0.08
$2.00 < q^2 < 4.30 \,\text{GeV}^2/c^4$	0.30 ± 0.05
$4.30 < q^2 < 8.68 \,\text{GeV}^2/c^4$	0.50 ± 0.05
$10.09 < q^2 < 12.86 \,\text{GeV}^2/c^4$	0.43 ± 0.05
$14.18 < q^2 < 16.00 \,\text{GeV}^2/c^4$	0.55 ± 0.07
$16.00 < q^2 < 19.00 \,\text{GeV}^2/c^4$	0.38 ± 0.05
$1.00 < \overline{q^2 < 6.00 \,\text{GeV}^2/c^4}$	0.35 ± 0.04

Table 7: The measured differential branching fraction for $B^0 \to K^{*0} \mu^+ \mu^$ in bins of q^2 . The errors are purely statistical and are the result of the fit described in the text.

⁴⁷⁸ 7.4 Cross check of the differential branching fraction

⁴⁷⁹ As a cross check, the differential branching ratio was calculated from the ⁴⁸⁰ event yields in Sec. [5,](#page-24-0) taking an average efficiency for the signal candidates ⁴⁸¹ in the q^2 bin, rather than weighting the candidates in the fit. The average ⁴⁸² efficiency is estimated in two ways: firstly using SM MC and secondly using 483 the sPlot technique [\[18\]](#page-205-6) to unfold the efficiency distribution of the signal. ⁴⁸⁴ The two approaches, of weighting in or after the fit, lead to consistent results. ⁴⁸⁵ The error estimates on N'_{sig} coming from the weighted-likelihood fit are ⁴⁸⁶ shown to be reliable using toy-experiments. Unlike the angular analysis, the α_{487} weights are uncorrelated to the $K^+\pi^-\mu^+\mu^-$ inviariant mass distribution and

488 the naive scaling of the weights by α is appropriate,

⁴⁸⁹ 7.5 Systematic uncertainties

⁴⁹⁰ In this section the result of the measurement of the differential branching ⁴⁹¹ ratio including the systematic uncertainty is shown.

⁴⁹² The systematic uncertainty on $d\mathcal{B}/dq^2$ has been estimated by repeating ⁴⁹³ the fits to the $K^+\pi^-\mu^+\mu^-$ invariant mass with a different, systematically ⁴⁹⁴ varied acceptance correction. The difference between $d\mathcal{B}/dq^2$ in the fit with ⁴⁹⁵ the varied acceptance and the nominal one is assigned as a systematic uncer-⁴⁹⁶ tainty. A complete description of the acceptance variations that are tried can ⁴⁹⁷ be found in Sec. [18.](#page-107-0) The mass fits have also been repeated after changing the ⁴⁹⁸ peaking background level by one sigma of the estimated uncertainty. This wariation has a negligible effect on the $d\mathcal{B}/dq^2$. A 5% variation of the signal ⁵⁰⁰ mass resolution has also been considered.

 $_{501}$ Finally, a one side systematic uncertainty is assigned to $d\mathcal{B}/dq^2$ to account f_{502} for the possible S-wave contamination in the $B^0 \to K^{*0} \mu^+ \mu^-$ decay. The S-

⁵⁰³ wave is indistinguishable from the signal in $K^+\pi^-\mu^+\mu^-$ and will lead to a ⁵⁰⁴ small over-estimate of the differential branching fraction. There will also be ⁵⁰⁵ an S-wave contamination in the normalisation channel $(B^0 \to K^{*0} J/\psi)$. This ⁵⁰⁶ contamination is however accounted for in the branching fraction that we use for normalisation, which in reality corresponds to $\mathcal{B}(B^0 \to K^+ \pi^- J/\psi)$ in the ⁵⁰⁸ same $\pm 100 \,\mathrm{MeV}/c^2$ mass window used in our analysis. An upper limit on the $S-$ S-wave contamination to $B^0 \to K^{*0} \mu^+ \mu^-$ is determined to be $F_S \lesssim 0.07$ at ⁵¹⁰ 68% confidence level (see Sec. [16](#page-97-0) for details).

⁵¹¹ The dominant source of systematic uncertainty arises from the 4% uncer- μ_{max} tainty on the $B^0 \to K^{*0} J/\psi$ and $J/\psi \to \mu^+ \mu^-$ branching fractions. The re-⁵¹³ sulting differential branching fraction, including the full list set of systematic ⁵¹⁴ uncertainties is summarised in Table. [8.](#page-34-0) A breakdown of the contributions ⁵¹⁵ to the total systematic uncertainty is given in Table. [9.](#page-35-0)

q^2 -bin	$d\mathcal{B}/dq^2(10^{-7}c^4/\text{GeV}^2)$
$0.10 < q^2 < 2.00 \,\text{GeV}^2/c^4$	$0.61 \pm 0.08 \pm 0.05^{+0.0}_{-0.05}$
$2.00 < q^2 < 4.30 \,\text{GeV}^2/c^4$	$0.30 \pm 0.05 \pm 0.03^{+0.0}_{-0.02}$
$4.30 < q^2 < 8.68 \,\text{GeV}^2/c^4$	$0.50 \pm 0.05 \pm 0.04_{-0.04}^{+0.0}$
$10.09 < q^2 < 12.86 \,\text{GeV}^2/c^4$	$0.43 \pm 0.05 \pm 0.04^{+0.0}_{-0.03}$
$14.18 < q^2 < 16.00 \,\text{GeV}^2/c^4$	$0.57 \pm 0.07 \pm 0.04^{+0.0}_{-0.05}$
$16.00 < q^2 < 19.00 \,\text{GeV}^2/c^4$	$0.42 \pm 0.05 \pm 0.04^{+0.0}_{-0.03}$
$1.00 < q^2 < 6.00 \,\text{GeV}^2/c^4$	$0.35 \pm 0.04 \pm 0.04_{-0.03}^{+0.0}$

Table 8: The measured differential branching fraction for $B^0 \to K^{*0} \mu^+ \mu^-$ in bins of q^2 . The first error is statistical, the second systematic, the third error is due to the S-wave contribution.

Table 9: Variation of $d\mathcal{B}/dq^2$ when systematically varying fit parameters or the weights applied to the input data set. The letter is a key corresponding to the text in Sec. 18. Table 9: Variation of $d\mathcal{B}/dq^2$ when systematically varying fit parameters or the weights applied to the input data set. The letter is a key corresponding to the text in Sec. 18.
σ ₅₁₆ The result of the differential branching fraction measurement in the six q^2 - bins is shown in Fig. [9](#page-36-0) .The SM prediction, and the prediction rate-averaged over the q^2 bin, are also indicated on the figure. No SM prediction is included for the region between the $c\bar{c}$ resonances where the assumptions made in the prediction break down.

Figure 9: Differential branching fraction as a function of q^2 . Points include both statistical and systematic uncertainties. The theory predictions are described in Ref. [\[19\]](#page-205-0).

521 8 Signal angular distribution

⁵²² 8.1 Angular basis

 $B^0 \to K^{*0} (\to K\pi)\mu^+\mu^-$ is treated as a pseudo-scalar to vector-vector decay ⁵²⁴ and the angular distribution expressed in the Helicity angular basis (the ⁵²⁵ decay amplitudes are however typically given as Transversity amplitudes). 526 In this basis the decay of the B^0 , K^{*0} and dimuon pair are each defined by a $_{527}$ 'polar' and 'azimuthal' angle. Taking the decay of the K^{*0} as an example, the ϵ_{28} 'polar' angle is the angle between the K^+ direction in the rest frame of the K^{*0} and the direction of the K^{*0} in the rest frame of its parent, the B^0 . The ϵ_{330} corresponding 'azimuthal' angle is a rotation of the plane containing the K^+ σ_{531} and π^- around the axis defined by the K^{*0} direction in the B^0 frame. This ⁵³² leads to an angular basis with six angles. In practice the physics content of ⁵³³ the decay can be expressed in terms of just three: θ_{ℓ} , θ_K and ϕ . The angle ϕ is ⁵³⁴ the angle between the planes defined by the $\mu^+\mu^-$ and the $K\pi$ in the B^0 rest 535 frame and is related to the 'azimuthal' angles of the K^{*0} and the dimuon in ⁵³⁶ their respective frames. The transformation between the B^0 and \bar{B}^0 is made 537 using the \mathcal{CP} operator, i.e. by exchanging particles for their anti-particles ⁵³⁸ and by reversing the particle momentum vectors.

⁵³⁹ 8.1.1 Nomenclature

 $_{540}$ In the remainder of this note the momentum vector of a particle a in the rest ⁵⁴¹ frame of f is expressed as \vec{p}_a^f and the sum of, and difference between, the μ ₅₄₂ momentum of two particles (a and b) in this frame as:

$$
\vec{p}_{ab}^{} = \vec{p}_a^{} + \vec{p}_b^{} \quad \text{and} \quad \vec{q}_{ab}^{} = \vec{p}_a^{} - \vec{p}_b^{} \quad .
$$

 $\frac{5}{43}$ The unit normal vector to the plane containing a and b in the rest frame of 544 f can then also be defined as:

$$
\hat{n}_{ab}^f = \frac{\vec{p}_a^{\ f} \times \vec{p}_b^{\ f}}{|\vec{p}_a^{\ f} \times \vec{p}_b^{\ f}|}
$$

.

8.1.2 The angle θ_{ℓ} 545

546 For the B^0 decay the angle θ_ℓ is defined by the angle between the vector $_{547}$ defining the direction of the μ^+ in the dimuon rest frame and the direction $_{548}$ of the dimuon in the B^0 rest frame. Equivalently this is the angle between ⁵⁴⁹ the μ^+ and the direction opposite that of the B^0 in the dimuon rest frame:

$$
\cos\theta_\ell=\frac{\vec{p}_{\mu^+}^{~\mu\mu}\cdot\vec{p}_{\mu^+\mu^-}^{~B}}{|\vec{p}_{\mu^+}^{~\mu\mu}||\vec{p}_{\mu^+\mu^-}^{~B}|}
$$

⁵⁵⁰ or equivalently

$$
\cos\theta_{\ell} = \frac{\vec{q}_{\mu+\mu^-}^{\ \mu\mu} \cdot \vec{p}_{\mu^+\mu^-}^{\ B}}{|\vec{q}_{\mu^+\mu^-}^{\ \mu\mu}| |\vec{p}_{\mu^+\mu^-}^{\ B}} = -\frac{\vec{q}_{\mu^+\mu^-}^{\ \mu\mu} \cdot \vec{p}_{B}^{\ \mu\mu}}{|\vec{q}_{\mu^+\mu^-}^{\ \mu\mu}| |\vec{p}_{B}^{\ \mu\mu}|} = -\frac{\vec{q}_{\mu^+\mu^-}^{\ \mu\mu} \cdot \vec{p}_{K^+\pi^-}^{\ \mu\mu}}{|\vec{q}_{\mu^+\mu^-}^{\ \mu\mu}| |\vec{p}_{K^+\pi^-}^{\ \mu\mu}|} \quad .
$$

 $_{551}$ For the \bar{B}^0 decay the angle is instead defined by the angle between the μ ⁻ in the $\mu^+\mu^-$ rest frame and the direction of the dimuon pair in the rest 553 frame of the $\overline{B}{}^{0}$:

$$
\cos\theta_L = \frac{\vec{p}_{\mu^-}^{\ \mu\mu} \cdot \vec{p}_{\mu^+ \mu^-}^{\ B}}{|\vec{p}_{\mu^-}^{\ \mu\mu}||\vec{p}_{\mu^+ \mu^-}^{\ B}} = -\frac{\vec{p}_{\mu^+}^{\ \mu\mu} \cdot \vec{p}_{\mu^+ \mu^-}^{\ B}}{|\vec{p}_{\mu^+}^{\ \mu\mu}||\vec{p}_{\mu^+ \mu^-}^{\ B}} \ \ .
$$

554 8.1.3 The angle θ_K

⁵⁵⁵ For the $B^0/\overline{B}{}^0$ the angle θ_K is defined by the angle between the vector ⁵⁵⁶ defining the direction of the K in the K^{*0}/\overline{K}^{*0} rest frame and the direction ⁵⁵⁷ of the K^{*0}/\overline{K}^{*0} in the B rest frame:

$$
\cos\theta_K = \frac{\vec{p}_{K}^{~K\pi} \cdot \vec{p}_{K\pi}^{~B}}{|\vec{p}_{K}^{~K\pi}||\vec{p}_{K\pi}^{~B}|}
$$

⁵⁵⁸ or

$$
\cos\theta_K = \frac{\vec{q}_{K\pi}^{K\pi} \cdot \vec{p}_{K\pi}^{B}}{|\vec{q}_{K\pi}^{K\pi}||\vec{p}_{K\pi}^{B}|} = -\frac{\vec{q}_{K\pi}^{K\pi} \cdot \vec{p}_{B}^{K\pi}}{|\vec{q}_{K\pi}^{K\pi}||\vec{p}_{B}^{K\pi}|} = -\frac{\vec{q}_{K\pi}^{K\pi} \cdot \vec{p}_{\mu^{+}\mu^{-}}}{|\vec{q}_{K\pi}^{K\pi}||\vec{p}_{\mu^{+}\mu^{-}}^{K\pi}|}.
$$

559 8.1.4 The angle ϕ

 560 The angle ϕ is given by the angle between the plane defined by the daughters ⁵⁶¹ of the dimuon and the daughters of the K^{*0} . In the case of the B^0 this is:

$$
\cos \phi = \hat{n}_{\mu^+ \mu^-}^B \cdot \hat{n}_{K^+ \pi^-}^B \quad \text{and} \quad \sin \phi = \left(\hat{n}_{\mu^+ \mu^-}^B \times \hat{n}_{K^+ \pi^-}^B\right) \cdot \frac{\vec{p}_{K^+ \pi^-}^{\ B}}{|\vec{p}_{K^+ \pi^-}^{\ B}|}
$$

⁵⁶² For the \bar{B}^0 decay the C operator exchanges the μ^+ and μ^- . After applying $\frac{563}{20}$ the \mathcal{P} to reverse the momentum directions:

$$
\cos \phi = \hat{n}_{\mu^- \mu^+}^B \cdot \hat{n}_{K^- \pi^+}^B = -\hat{n}_{\mu^+ \mu^-}^B \cdot \hat{n}_{K^- \pi^+}^B
$$

⁵⁶⁴ as the P operator leaves $\hat{n}^B_{\mu^-\mu^+}$ unchanged:

$$
\mathcal{P}(\hat{n}^B_{\mu^-\mu^+})=\hat{n}^B_{\mu^-\mu^+}
$$

⁵⁶⁵ and

$$
\sin \phi = -\left(\hat{n}^{B}_{\mu^{-}\mu^{+}} \times \hat{n}^{B}_{K^{-}\pi^{+}}\right) \cdot \frac{\vec{p}^{B}_{K^{-}\pi^{+}}}{|\vec{p}^{B}_{K^{-}\pi^{+}}|} = +\left(\hat{n}^{B}_{\mu^{+}\mu^{-}} \times \hat{n}^{B}_{K^{-}\pi^{+}}\right) \cdot \frac{\vec{p}^{B}_{K^{-}\pi^{+}}}{|\vec{p}^{B}_{K^{-}\pi^{+}}|} .
$$

⁵⁶⁶ 8.2 Differential angular distribution

⁵⁶⁷ The differential angular distribution of $B^0 \to K^{*0} \mu^+ \mu^-$ candidates when ⁵⁶⁸ neglecting terms proportional to $\sqrt{m_\mu^2/q^2}$ or m_μ^2/q^2 is given by:

$$
\frac{d^4\Gamma[B^0 \to K^{*0}\mu^+\mu^-]}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[I_1^s \sin^2\theta_K + I_1^c \cos^2\theta_K + I_2^c \cos^2\theta_K \right] \cos 2\theta_\ell +
$$

\n
$$
(I_2^s \sin^2\theta_K + I_2^c \cos^2\theta_K) \cos 2\theta_\ell +
$$

\n
$$
I_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + I_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi +
$$

\n
$$
I_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + I_6 \sin^2\theta_K \cos \theta_\ell +
$$

\n
$$
I_7 \sin \theta_\ell \sin 2\theta_K \sin \phi + I_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi +
$$

\n
$$
I_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi \right]
$$

569 where I_1 through I_9 are:

$$
I_1^c = (|A_{0L}|^2 + |A_{0R}|^2)
$$

\n
$$
I_1^s = \frac{3}{4} (|A_{||L}|^2 + |A_{||R}|^2 + |A_{\perp L}|^2 + |A_{\perp R}|^2)
$$

\n
$$
I_2^c = - (|A_{0L}|^2 + |A_{0R}|^2)
$$

\n
$$
I_2^s = \frac{1}{4} (|A_{||L}|^2 + |A_{||R}|^2 + |A_{\perp L}|^2 + |A_{\perp R}|^2)
$$

\n
$$
I_3 = \frac{1}{2} (|A_{\perp L}|^2 - |A_{||L}|^2 + |A_{\perp R}|^2 - |A_{||R}|^2)
$$

\n
$$
I_4 = \frac{1}{\sqrt{2}} (Re(A_{0L}A_{||L}^*) + Re(A_{0R}A_{||R}^*))
$$

\n
$$
I_5 = \sqrt{2} (Re(A_{0L}A_{\perp L}^*) - Re(A_{0R}A_{\perp R}^*))
$$

\n
$$
I_6 = 2 (Re(A_{||L}A_{\perp L}^*) - Re(A_{||R}A_{\perp R}^*))
$$

\n
$$
I_7 = \sqrt{2} (Im(A_{0L}A_{||L}^*) - Im(A_{0R}A_{||R}^*))
$$

\n
$$
I_8 = \frac{1}{\sqrt{2}} (Im(A_{0L}A_{\perp L}^*) + Im(A_{0R}A_{\perp R}^*))
$$

\n
$$
I_9 = (Im(A_{||L}A_{\perp L}^*) + Im(A_{||R}A_{\perp R}^*))
$$

 \mathfrak{so} i.e. they depend on the K^{*0} transversity amplitudes, which in turn are sensitive to the contributions from NP. The L and R labels on the K^{*0} 571 ⁵⁷² transversity amplitudes refer to the chirality of the lepton current, which can ⁵⁷³ be both left- and right-handed.

 $\text{Neglecting terms proportional to } m_\mu^2/q^2 \text{ and possible scalar and tensor}$ 575 amplitudes there are 6 complex amplitudes that appear in I_1 through I_9 . In 576 the most general case there would be $6+3$ (tensor) + 1(scalar) + 1(time − like) ⁵⁷⁷ complex amplitudes.

 578 The addition of a broad S-wave, with $K\pi$ system in a spin 0 state, mod- 579 ifies terms in $I_{1...9}$ according to:

$$
A_{0L,R}Y_1^0(\theta_K) \to \sum_{J=0,1} A_0^J Y_J^0(\theta_K)
$$

⁵⁸⁰ where the index J refers to the spin of the $K\pi$ system and the $Y_J^0(\theta_K)$ are ⁵⁸¹ spherical harmonics. There is no contribution from the S-wave to terms 582 in $A_{\parallel L,R}$ and $A_{\perp L,R}$ (because these correspond to transverse polarisation of ϵ_{583} the $K^+\pi^-$ system). The S-wave contribution to the angular observables is ⁵⁸⁴ discussed in detail below.

$_{585}$ 8.3 $\,$ Combining B^0 and \bar{B}^0 decays

 586 The angular basis has been defined starting with the $B⁰$ decay and applying ⁵⁸⁷ the CP transformation to go from the B^0 to the $\overline{B}{}^0$ decay. As a result, ⁵⁸⁸ neglecting any production, detector or direct CP asymmetry, the combined ⁵⁸⁹ angular distribution for the B^0 and the $\overline{B}{}^0$ is given by:

$$
\frac{d[B^0 + \overline{B}^0]}{d\cos\theta_\ell \, d\cos\theta_K \, d\phi \, dq^2} = \frac{9}{32\pi} \sum_{i=1}^9 (I_i + \overline{I}_i) f_i(\cos\theta_\ell, \cos\theta_K, \phi)
$$

⁵⁹⁰ This is a different angular basis to the one that often appears in literature. ⁵⁹¹ Using the nomenclature of Ref. [\[11\]](#page-204-0), this corresponds to describing the an-⁵⁹² gular distribution by a sum of S_1 to S_9 when combining B^0 and $\overline{B}{}^0$ decays.

593 8.3.1 CP averages and CP asymmetries $(A_9$ vs S_9)

⁵⁹⁴ Whilst the angular basis differs from the theory convention, it is identical 595 to that of BaBar, Belle and CDF for the angles θ_{ℓ} and θ_{K} . It does however 596 differ from the CDF ϕ angle definition in Ref. [\[7\]](#page-204-1). The CDF ϕ definition does 597 not obey the CP transformation needed to measure S_9 . Instead under the ⁵⁹⁸ CDF definition, the difference between B^0 and $\overline{B}{}^0$ decays is measured for all 599 terms that are 'odd' in ϕ (terms 7, 8 and 9). Consequently under the CDF 600 definition, for example, A_9 appears in place of S_9 in the angular distribution. ⁶⁰¹ Explicitly, in the absence of any production, detector or direct CP asymme-⁶⁰² try:

$$
S_9 = \frac{1}{2} (I_9 + \bar{I}_9) \text{ and } A_9 = \frac{1}{2} (I_9 - \bar{I}_9) .
$$

⁶⁰³ If production, detection or direct CP asymmetries become large then there ω_4 will be a mixing between S_9 and A_9 . This effect is neglected in this analy-⁶⁰⁵ sis. The angular distributions and the PID likelihoods for kaons and pions α_0 are compared for B^0 and \overline{B}^0 , using the decay $B^0 \to K^{*0} J/\psi$, as shown in ⁶⁰⁷ Appendix [C.](#page-159-0) No significant discrepancy has been observed.

 ϵ_{08} The observable A_9 is a T-odd CP asymmetry. This has little meaning for this self-tagging decay, but A_9 could, for example, also be measured in decays $B_s^0 \to \phi \mu^+ \mu^-$ and $B^0 \to K^{*0} \mu^+ \mu^ (K^{*0} \to K_s^0 \pi^0)$ where it is not possible to unambiguously separate the B and \overline{B} decays.

 ϵ_{612} In terms of NP sensitivity the principle difference between S_9 and A_9 is ⁶¹³ that:

$$
S_9 \propto \cos \lambda \sin \delta
$$
 and $A_9 \propto \sin \lambda \cos \delta$,

 ϵ_{614} where δ is a strong phase and λ is the contribution from the weak phase. In ⁶¹⁵ the SM both the strong phase and the weak phase are small (the weak phase 616 contribution comes from V_{ts} and so A_9 and $S_9 \sim 0$. S_9 remains small in NP 617 models. It is possible to fit for A_9 in place of S_9 in the LHCb convention by ⁶¹⁸ swapping the sign of φ (φ → -φ) for \overline{B}^0 decays only. To avoid confusion 619 below, the notation A_{Im} is adopted to refer to either S_9 or A_9 in the angular ⁶²⁰ distribution.

⁶²¹ While the principal difference between S_9 and A_9 is a simple sign change ϵ_{22} of the ϕ angle for B^0 and \overline{B}^0 decays, it has important experimental conse- ϵ_{623} quences. When measuring S_9 , there is a need to understand the combined ⁶²⁴ acceptance correction for the combination of B^0 and $\overline{B}{}^0$ decays. Conversely 625 when measuring A_9 there is a need to understand the difference between the ⁶²⁶ acceptance correction for B^0 and $\overline{B}{}^0$ decays.

 627 If there were to be a significant production, detection or direct CP asym-⁶²⁸ metry between the B^0 and \bar{B}^0 that results in a different number of B^0 and \bar{B}^0 decays appearing in the angular analysis, then this would lead to a mixing ⁶³⁰ between the A's and S's:

$$
A_i^{\text{measured}} \approx A_i - S_i(A_{CP} + A_D + \kappa A_P)
$$

 ϵ_{31} where A_P is the B^0 - $\overline{B}{}^0$ production asymmetry, A_D , the detection asymmetry, 632 Acp the direct CP asymmetry and κ is a factor to account for the dilution 633 of A_P due to mixing.

634 Folding the ϕ -angle

⁶³⁵ The differential branching fraction can be greatly simplified by "folding" the ⁶³⁶ φ-angle such that $\hat{\phi} = \phi + \pi$ if $\phi < 0$. This cancels terms with with cos φ and 637 sin ϕ dependencies (but not cos 2 ϕ and sin 2 ϕ), i.e. the terms I_4 , I_5 , I_6 and I_8 above. This cancellation dramatically simplifies the angular expression ⁶³⁹ and leaves sensitivity to F_L , A_{FB} (through I_6), A_T^2 (through I_3) and A_{Im} $_{640}$ (through I_9).

⁶⁴¹ This simplification leads to:

$$
\frac{1}{\Gamma} \frac{d^4 \Gamma}{d \cos \theta_\ell d \cos \theta_K d\hat{\phi} dq^2} = \frac{9}{16\pi} \left[F_L \cos^2 \theta_K + \frac{3}{4} F_T (1 - \cos^2 \theta_K) + \frac{1}{4} F_T (1 - \cos^2 \theta_K) \cos 2\theta_\ell - F_L \cos^2 \theta_K \cos 2\theta_\ell + S_3 (1 - \cos^2 \theta_\ell) (1 - \cos^2 \theta_K) \cos 2\hat{\phi} + \frac{4}{3} A_{FB} (1 - \cos^2 \theta_K) \cos \theta_\ell + A_{Im} (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_\ell) \sin 2\hat{\phi} \right]
$$

⁶⁴² where A_{FB} , F_L , A_T^2 and A_{Im} are:

$$
A_{FB} = \frac{3}{2} \frac{Re(A_{\parallel L}A_{\perp L}^*) - Re(A_{\parallel R}A_{\perp R}^*)}{|A_{0L}|^2 + |A_{\parallel L}|^2 + |A_{\perp L}|^2 + |A_{0R}|^2 + |A_{\parallel R}|^2 + |A_{\perp R}|^2}
$$

$$
F_L = \frac{|A_{0L}|^2 + |A_{0R}|^2}{|A_{0L}|^2 + |A_{\parallel L}|^2 + |A_{\perp L}|^2 + |A_{0R}|^2 + |A_{\parallel R}|^2 + |A_{\perp R}|^2} = 1 - F_T
$$

$$
A_{Im} = \frac{Im(A_{\parallel L}A_{\perp L}^*) + Im(A_{\parallel R}A_{\perp R}^*)}{|A_{0L}|^2 + |A_{\parallel L}|^2 + |A_{\perp L}|^2 + |A_{0R}|^2 + |A_{\parallel R}|^2 + |A_{\perp R}|^2}
$$

$$
S_3 = \frac{1}{2} \frac{|A_{\perp L}|^2 - |A_{\parallel L}|^2 + |A_{\perp R}|^2 - |A_{\parallel R}|^2}{|A_{0L}|^2 + |A_{\perp L}|^2 + |A_{\parallel L}|^2 + |A_{0R}|^2 + |A_{\perp R}|^2 + |A_{\parallel R}|^2}
$$

 A_{FB} and A_{Im} can both in principal take different values for B^0 and \overline{B}^0 643 ⁶⁴⁴ decays.

⁶⁴⁵ 8.5 Angular projections

⁶⁴⁶ It is also possible (as described in the previous analysis note [\[13\]](#page-205-1)) to have ⁶⁴⁷ sensitivity to these observables by integrating the full differential angular ⁶⁴⁸ distribution over all but one of the angles. This leads to:

$$
\frac{1}{\Gamma} \frac{d^2 \Gamma}{d \cos \theta_\ell dq^2} = \frac{3}{4} F_L (1 - \cos^2 \theta_\ell) + \frac{3}{8} (1 - F_L) (1 + \cos^2 \theta_\ell) + A_{FB} \cos \theta_\ell ,
$$

$$
\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}\cos\theta_K \,\mathrm{d}q^2} = \frac{3}{2} F_L \cos^2\theta_K + \frac{3}{4} (1 - F_L)(1 - \cos^2\theta_K)
$$

⁶⁴⁹ and

$$
\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}\phi \,\mathrm{d}q^2} = \frac{1}{2\pi} \left[1 + S_3 \cos 2\phi + A_{Im} \sin 2\phi \right]
$$

⁶⁵⁰ The angular distribution in $\cos \theta_K$ depends only on a single parameter F_L , ⁶⁵¹ the fraction of longitudinally polarised K^{*0} . The distribution in cos θ_L has ϵ ₅₅₂ two free parameters F_L and A_{FB} , the forward-backward asymmetry of the 653 muons in the dimuon rest frame. The angle ϕ depends on F_L , S_3 and A_{Im} .

$\bf 8.6 \quad Re\text{-}parametrisation using \ A^{Re}_T \ \text{and} \ A^{Im}_T$ 654

⁶⁵⁵ It has for a long-time been suggested in the theory literature that the quan-⁶⁵⁶ tity:

$$
A_T^2 = \frac{|A_{\perp L}|^2 - |A_{\parallel L}|^2 + |A_{\perp R}|^2 - |A_{\parallel R}|^2}{|A_{\perp L}|^2 + |A_{\parallel L}|^2 + |A_{\perp R}|^2 + |A_{\parallel R}|^2}
$$

⁶⁵⁷ is a cleaner observable than S_3 because it is free from $|A_{0(L/R)}|^2$ and therefore ⁶⁵⁸ has a reduced form factor uncertainty. This can be extracted from a fit to ϵ ₆₅₉ the data by replacing S_3 by:

$$
S_3 = \frac{1}{2}(1 - F_L)A_T^2.
$$

⁶⁶⁰ It has also been suggested in Ref.[\[12\]](#page-205-2) that:

$$
A_T^{Re} = 2.\frac{Re(A_{\parallel L}A_{\perp L}^*) - Re(A_{\parallel R}A_{\perp R}^*)}{|A_{\parallel L}|^2 + |A_{\perp L}|^2 + |A_{\parallel R}|^2 + |A_{\perp R}|^2}
$$

 ϵ_{661} is theoretically a cleaner observable than A_{FB} as it does not depend on ⁶⁶² $\Gamma = |A_{0L}|^2 + |A_{\parallel L}|^2 + |A_{\perp L}|^2 + |A_{0R}|^2 + |A_{\parallel R}|^2 + |A_{\perp R}|^2$ and instead only ϵ_{663} contains A_{\parallel} and A_{\perp} (reducing hadronic uncertainties). It is also interesting ⁶⁶⁴ to note that this implies:

$$
A_{FB} = \frac{3}{4} F_T A_T^{Re} = \frac{3}{4} (1 - F_L) A_T^{Re}
$$

.

665 From the expression for the projection of $\cos \theta_{\ell}$, if $\cos \theta_{\ell} \rightarrow \pm 1$ then:

$$
\frac{1}{\Gamma} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}\cos\theta_\ell \mathrm{d}q^2} \to \frac{3}{4} (1 - F_L) \pm A_{FB} .
$$

⁶⁶⁶ For $(1\Gamma)(d^2\Gamma/d\cos\theta_{\ell dq^2})$ to remain positive for all values of $\cos\theta_l$ then $A_{FB} \leq$ 3 $_{667}$ $_{4}^{3}(1-F_L)$. This requirement is automatically enforced by A_T^{Re} if $-1 < A_T^{Re} <$ ϵ_{668} 1. A similar observable can be found to replace A_{Im} :

$$
A_T^{Im} = 2.\frac{Im(A_{\parallel L}A_{\perp L}^*) + Im(A_{\parallel R}A_{\perp R}^*)}{|A_{\parallel L}|^2 + |A_{\perp L}|^2 + |A_{\parallel R}|^2 + |A_{\perp R}|^2}
$$

⁶⁶⁹ such that:

$$
A_{Im} = \frac{1}{2} F_T A_T^{Im} = \frac{1}{2} (1 - F_L) A_T^{Im}
$$

which simplifies the fit. A constraint still exists between A_T^{Re} , A_T^2 and A_T^{Im} 670 ⁶⁷¹ which can not simply be expressed. The effect of such a re-parametrisation 672 can be seen in Fig. [10](#page-46-0) where the regions of phase-space in which the fit pdf ϵ_{673} can go negative are shown for $A_{FB} = 0.1$ and $F_L = 0.8$. These values are ϵ_{74} similar to the results of the previous analysis [\[14\]](#page-205-3) in the region $2 < q^2 < 4.3$. 675 The left plot indicates these regions when fitting with A_{Im} , the right plot σ when fitting with A_T^{Im} . It is clear that the valid phase-space is larger using ⁶⁷⁷ the A_T^{Im} observable.

⁶⁷⁸ 8.7 Observable discussion

 σ ⁷ The physics observables in the angular distribution are all q^2 dependent. In ϵ_{680} practice what is measured when using a wide bin of q^2 is the rate average of ϵ_{681} each of the observables over the q^2 bin. So for example,

$$
\langle F_{\rm L} \rangle = \int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{1}{\Gamma} \frac{d\Gamma}{dq^2} F_{\rm L}(q^2) dq^2
$$

$$
\langle A_{\rm FB} \rangle = \int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{1}{\Gamma} \frac{d\Gamma}{dq^2} A_{\rm FB}(q^2) dq^2
$$

⁶⁸² The situation is more complicated for terms in the angular expression that ⁶⁸³ contain the product of two q^2 -dependent "observables". This includes A_T^{Re} , A_T^{Im} , when re-parameterising the angular distribution and A_T^2 . Here, the fit ⁶⁸⁵ is sensitive to e.g.:

$$
\langle (1 - F_{\rm L}) A_{\rm T}^2 \rangle = \int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{1}{\Gamma} \frac{d\Gamma}{dq^2} (1 - F_{\rm L}(q^2) A_{\rm T}^2(q^2) dq^2
$$

 $\frac{1}{686}$ which is not the same as the product of the two q^2 -averaged values:

$$
\left\langle (1 - F_{\rm L}) A_{\rm T}^2 \right\rangle \neq \left\langle (1 - F_{\rm L}) \right\rangle \times \left\langle A_{\rm T}^2 \right\rangle
$$

Figure 10: Comparison of the fraction of the pdf that is invalid in regions of phase-space when fitting with the observables A_{Im} (left) and A_{T}^{Im} (right). The observable A_T^{Im} has a significantly larger valid region, increasing the stability of fits.

 ϵ_{087} unless one of the observables is constant over the q^2 -bin. An unfortunate ⁶⁸⁸ consequence is that the measured quantities, coming from the maximum ⁶⁸⁹ likelihood fit are not exactly the same as the quantity that is predicted by ϵ_{000} theorists. They will however tend to be similar unless the q^2 -dependence of 691 both of F_L and the observable is large.

However the integrated averaged transverse observables which are fitted on data can be compared with well defined quantities that theorists can predict. One has

$$
\langle A_{\rm FB} \rangle = \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{d\Gamma}{dq^2} A_{\rm FB}(q^2) dq^2}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{d\Gamma}{dq^2} dq^2} = \frac{3}{4} \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{d\Gamma}{dq^2} A_{\rm T}^{Re}(q^2) (1 - F_{\rm L}(q^2)) dq^2}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{d\Gamma}{dq^2} dq^2}
$$

\n
$$
= \frac{3}{4} \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{d\Gamma}{dq^2} A_{\rm T}^{Re}(q^2) (1 - F_{\rm L}(q^2)) dq^2}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{d\Gamma (1 - F_{\rm L}(q^2))}{dq^2} dq^2} \times \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{d\Gamma (1 - F_{\rm L}(q^2))}{dq^2} dq^2}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{d\Gamma}{dq^2} A_{\rm T}^{Re}(q^2) (1 - F_{\rm L}(q^2)) dq^2} \times \frac{d\Gamma}{dq^2} dq^2}
$$

\n
$$
= \frac{3}{4} \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{d\Gamma}{dq^2} A_{\rm T}^{Re}(q^2) (1 - F_{\rm L}(q^2)) dq^2}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} \frac{d\Gamma (1 - F_{\rm L}(q^2))}{dq^2} dq^2} \times (1 - \langle F_{\rm L} \rangle)
$$

One can then define

$$
\left\langle A_{\text{T}}^{\tilde{R}e} \right\rangle = \frac{\int_{q_{\text{min}}^2}^{q_{\text{max}}^2} \frac{d\Gamma}{dq^2} A_{\text{T}}^{Re}(q^2)(1 - F_{\text{L}}(q^2))dq^2}{\int_{q_{\text{min}}^2}^{q_{\text{max}}^2} \frac{d\Gamma(1 - F_{\text{L}}(q^2))}{dq^2}dq^2} = \frac{\int_{q_{\text{min}}^2}^{q_{\text{max}}^2} \frac{d\Gamma_T}{dq^2} A_{\text{T}}^{Re}(q^2)dq^2}{\int_{q_{\text{min}}^2}^{q_{\text{max}}^2} \frac{d\Gamma_T}{dq^2}dq^2}
$$

which can be computed from theoretical models. Similarly one can compare the fitted values of $A_{\rm T}^{(2)}$ $T_{\rm T}^{(2)}$ and $A_{\rm T}^{Im}$ with

$$
\left\langle \hat{A_{\mathrm{T}}}^{(2)} \right\rangle = \frac{\int_{q_{\mathrm{min}}^{2}}^{q_{\mathrm{max}}^{2}} \frac{d\Gamma_{T}}{dq^{2}} A_{\mathrm{T}}^{(2)}(q^{2}) dq^{2}}{\int_{q_{\mathrm{min}}^{2}}^{q_{\mathrm{max}}^{2}} \frac{d\Gamma_{T}}{dq^{2}} dq^{2}}
$$

and

$$
\left\langle A_{\textrm{T}}^{\widetilde{I}m} \right\rangle = \frac{\int_{q_{\textrm{min}}^2}^{q_{\textrm{max}}^2} \frac{d\Gamma_T}{dq^2} A_{\textrm{T}}^{Im}(q^2) dq^2}{\int_{q_{\textrm{min}}^2}^{q_{\textrm{max}}^2} \frac{d\Gamma_T}{dq^2} dq^2}
$$

⁶⁹² It has been checked with a very large Monte-Carlo sample that the result $\epsilon_{0.93}$ of the fit of a given transverse variable in a q^2 bin is actually equal to a high ⁶⁹⁴ accuracy to the average given above.

695 9 Measurement of angular observables with ⁶⁹⁶ likelihood fit

⁶⁹⁷ 9.1 Background angular model

⁶⁹⁸ The background angular model is assumed to be factorisable into three one-⁶⁹⁹ dimensional angular distributions. The full angular model is then given by:

$$
P_{\text{bkg.}}(\cos \theta_l, \cos \theta_K, \phi) = P_{\text{bkg.}}(\cos \theta_l) P_{\text{bkg.}}(\cos \theta_K) P_{\text{bkg.}}(\phi)
$$

$$
= \left(\sum_{k=0}^n c_k^l T_k(\cos \theta_l)\right) \left(\sum_{k=0}^n c_k^K T_k(\cos \theta_K)\right) \left(\sum_{k=0}^n c_k^\phi T_k(\phi)\right)
$$

⁷⁰⁰ where T_k is a k^{th} order Chebychev polynomial of the first kind. The angular ⁷⁰¹ distribution is assumed to be independent of the $K^+\pi^-\mu^+\mu^-$ invariant mass 702 for $m_{K\pi\mu^+\mu^-} > 5150$ MeV/ c^2 .

 In the likelihood fit for the angular observables, the background shapes in each of the angles are limited to $\mathcal{O}(2)$ (i.e. they are parabolic). Higher order background shapes are investigated as a potential source of systematic uncertainty.

 T_{707} The factorisation assumption is validated using events in the upper $K^+\pi^-\mu^+\mu^-$ mass sideband and a point-to-point dissimilarity test [\[1\]](#page-204-2) to form an unbinned comparison of the angular model and the data. The probability of the test statistic being smaller than the value observed for the data is 25% (Fig. [11\)](#page-49-0).

711 9.2 Background distribution in the sidebands

 The q^2 -distribution of events in the lower (defined as 5150 $\lt m_{K^+\pi^-\mu^+\mu^-}$) ⁷¹³ 5220 MeV/ c^2) and upper (5350 < $m_{K^+\pi^-\mu^+\mu^-}$ < 5800 MeV/ c^2) mass sidebands τ ¹⁴ are shown in Fig. [12\(](#page-50-0)a). The χ^2 probability for the normalised distributions of the left and right sidebands to come from the same parent distribution is 30%, i.e. the two sidebands are statistically compatible with each other. This is an important check for the method used for the extraction of the zero-crossing point described in section [21.](#page-131-0)

The angular fit is done independently for the different bins of q^2 , therefore τ ₂₀ it is not strictly required that the q^2 distribution is the same for the two ⁷²¹ sidebands. However, it is assumed that the sideband angular distributions 722 describe the combinatorial background in the signal region. Figs. [12](#page-50-0) (b), (c) ⁷²³ and (d) show the comparison between the angular distributions for the left τ ²⁴ and the right sideband. The χ^2 probability for the angular distributions of 725 the two sidebands ranges from 16% to 60%. The angular distributions of

Figure 11: Distribution of the test statistic, T , from a point-to-point dissimilarity test made using the factorised background angular model in the upper mass sideband. The distribution from toy experiments is shown by the curve and the value in data by the vertical line. The probability, $P(T \leq T_{\text{data}}) = 25\%.$

 the two sidebands are therefore also statistically compatible with each other. This also demonstrates that there is no anomalous contamination of double semi-leptonic decays in the low-mass sideband (and by extension the signal ⁷²⁹ region).

True If the lower mass sideband is extended down to a K^+ $\pi^ \mu^+\mu^-$ invariant σ_{31} mass of 5000 MeV/ c^2 , there is no longer good agreement between the back- σ ₇₃₂ ground angular and q^2 distribution between the upper and lower (left- and ⁷³³ right-) mass sidebands. This is expected due to contamination from double ⁷³⁴ semi-leptonic decays and partially reconstructed backgrounds.

Figure 12: Comparison between the left and the right sideband for the q^2 and the angular distributions.

⁷³⁵ 9.3 Angular resolution

⁷³⁶ The signal angular resolution is studied using simulated events. The resolu-⁷³⁷ tion in θ_K , θ_ℓ and ϕ in physics MC (in the q^2 range $4m_{\mu^2} < q^2 < 19 \,\text{GeV}^2/c^4$) $\frac{1}{738}$ is shown in Fig. [13.](#page-51-0) The resolution is sufficiently good to have a negligible ⁷³⁹ impact on the signal angular fit. No large dependence of the resolution on q^2 is seen.

Figure 13: Signal angular resolution in θ_K , θ_ℓ and ϕ as measured using SMlike simulated events.

741 9.4 $B^0 \leftrightarrow \overline{B}{}^0$ mis-identification

⁷⁴² If a \overline{B}^0 decay is mis-identified as a B^0 decay by exchanging the kaon and ⁷⁴³ pion, then $\cos \theta_{\ell} \to -\cos \theta_{\ell}$, $\cos \theta_{K} \to -\cos \theta_{K}$ and $\phi \to -\phi$. This exchange $_{744}$ has dilutes the measured forward-backward asymmetry and A_{Im} , but has no ⁷⁴⁵ impact on A_T^2 and F_L .

$$
A_{FB} \rightarrow (1 - 2\omega_{\rm ID})A_{FB}
$$

$$
A_{Im} \rightarrow (1 - 2\omega_{\text{ID}})A_{Im}
$$

⁷⁴⁶ for a $B^0 \leftrightarrow \overline{B}{}^0$ (equivalently K^{*0} to $\overline{K}{}^{*0}$) mis-identification pro ability of ω_{ID} . ⁷⁴⁷ This dilution would be exact if kaon and pion mass were identical. In practice $m_K > m_\pi$ means that the angular distribution in $\cos \theta_K$ is not identical to ⁷⁴⁹ the distribution of the signal (exchanging $\cos \theta_K \rightarrow -\cos \theta_K$). From Sec. [3.4,](#page-17-0) ω_{ID} is estimated to be 0.85 \pm 0.02%. The mis-identification probability is kept ⁷⁵¹ constant in the fit, but will be varied as a source of systematic uncertainty.

⁷⁵² 9.5 Physical boundaries for angular observables

⁷⁵³ Tables [10](#page-52-0) and [11](#page-52-1) below outline the physical ranges of the parameters used ⁷⁵⁴ in the angular analysis. The table also indicates which variables are at some ⁷⁵⁵ level intrinsically correlated. For example, A_T^{Re} , A_T^2 and A_T^{Im} are all related $_{756}$ through $A_{\parallel L,R}$ and $A_{\perp L,R}$. There are three choices of "physics" parameters:

- ⁷⁵⁷ 1. Transverse observables $(F_L, A_T^2, A_T^{Re.} \text{ and } A_T^{Im.})$;
- $_{758}$ 2. $F_{\rm L}$, $A_{\rm FB}$, S_3 and S_9 ;
- F_{L} , A_{FB} , S_3 and A_9 .

 τ ⁵⁶⁰ In Table. [10,](#page-52-0) A_{Im} refers to both S_9 and A_9 .

Parameter	Range	Comments
$A_{\rm FB}$		
S_3		$-\frac{3}{4} < A_{FB} < \frac{3}{4}$ Parameter correlated to F_L , S_3 and A_{Im} $-\frac{1}{2} < S_3 < \frac{1}{2}$ Parameter correlated to F_L , A_{FB} and A_{Im}
$A_{\rm Im}$	$-1 < A_{\text{Im}} < 1$	Parameter correlated to F_{L} , S_{3} and A_{FB}
$F_{\rm L}$	$0 < F_{\rm L} < 1$	Parameter correlated to A_{FB} , A_{Im} and S_3

Table 10: The "physics" parameters, their allowed ranges and correlations with the other physics parameters.

Parameter	Range	Comments
$A_T^{Re.}$		$-1 < A_T^{Re.} < 1$ Parameter correlated to A_T^2 and $A_T^{Im.}$
A_T^{Im}		$-1 < A_T^{Im} < 1$ Parameter correlated to A_T^2 and A_T^{Re} .
$A^2_{\rm T}$		$-1 < A_T^2 < 1$ Parameter correlated to $A_T^{Re.}$ and $A_T^{Im.}$
$F_{\rm L}$	0 < F _L < 1	Parameter un-correlated to other parameters

Table 11: The "transverse" parameters, their allowed ranges and correlations with the other physics parameters.

⁷⁶¹ In many cases the physical ranges also correspond to a mathematical ⁷⁶² boundary. Beyond the physical range the PDF describing the signal can ⁷⁶³ become negative. For example a larger value of A_T^{Re} can make the PDF τ ⁶⁴ negative at $\cos \theta_l \sim \pm 1$. When A_{FB} , F_{L} , A_{Im} and $S_3 = \frac{1}{2}A_T^2(1 - F_L)$ are used ⁷⁶⁵ as the choice of variables, there are mathematical boundaries that require:

$$
A_{\rm FB} \leq \frac{3}{4} (1 - F_{\rm L}) ,
$$

\n
$$
A_{\rm Im} \leq \frac{1}{2} (1 - F_{\rm L}) ,
$$

\n
$$
S_3 \leq \frac{1}{2} (1 - F_{\rm L}) .
$$

⁷⁶⁶ These constraints can be seen directly in the differential angular distri- 767 bution and in the expression for A_{FB} in terms of the transversity amplitudes. ⁷⁶⁸ If $|A_0|^2 \to 1$, then $|A_{\parallel}|^2$ and $|A_{\perp}|^2 \to 0$ and $A_{FB} = 0$. A similar constraint exists between A_{Im} and F_{L} , $A_{\text{Im}} \leq \frac{1}{2}$ ⁷⁶⁹ exists between A_{Im} and F_{L} , $A_{\text{Im}} \leq \frac{1}{2}(1 - F_{\text{L}})$. There are also non-trivial 770 boundary effects between A_{FB} , A_{Im} and S_3 , that cannot be expressed easily.

771 9.6 Unbinned maximum likelihood fit for the ⁷⁷² angular observables

 The signal fit parameters are estimated by performing an unbinned maxi- mum likelihood fit to the data, weighting the candidates to account for the detector acceptance. The acceptance weights are defined as the inverse of the efficiency and they are applied in an even-by-event basis. The efficiency π for each event is extracted as a function of the three angles and q^2 using phase space MC simulation. This procedure is described in detail in Sec. [11.](#page-57-0) Multiple candidates are also accounted for by weighting each candidate by the inverse of the number of candidates in each event. In practice, the log-likelihood,

$$
-\log L = -\sum_{i=0}^{N} \alpha \omega_i \log \left[f_{\text{sig}} P_{\text{sig.}}(m_{K^+\pi^-\mu^+\mu^-}, \vec{\Omega}_i; \vec{\lambda}_{\text{sig}}) + (1 - f_{\text{sig}}) P_{\text{bkg.}}(m_{K^+\pi^-\mu^+\mu^-}, \vec{\Omega}_i, \vec{\lambda}_{\text{bkg}}) \right]
$$

⁷⁸² is minimised, where $\vec{\lambda}_{\text{sig}}$ are the physics parameters, f_{sig} is the signal fraction ⁷⁸³ and $\vec{\Omega} = (\cos \theta_l, \cos \theta_K, \phi)$. The weights, ω_i are normalised such that the sum ⁷⁸⁴ of the weights is the number of candidates, i.e.

$$
\sum_{i=0}^N \alpha \omega_i = N .
$$

⁷⁸⁵ in each q^2 bin, where α is a scale-factor used to normalise the weights. With this normalisation the weighted "pseudo-likelihood" has a habit of under- covering. This is due to the fact that the correct scaling of the log likeli- hood is distorted by the weights. Unfortunately the normalisation applied is only a first order correction. Toy Monte Carlo studies showed that the ⁷⁹⁰ under-coverage is approximately given by $\sum w_i^2 / \sum w_i$, which in our case corresponds to a correction to the error of about 10%.

⁷⁹² The full signal PDF is given by:

$$
P_{\text{sig}}(m_{K^+\pi^-\mu^+\mu^-}, \vec{\Omega}_i, \vec{\lambda}_{\text{bkg}}) = M(m_{K^+\pi^-\mu^+\mu^-}|\sigma_1, \sigma_2, \alpha, n) \times \left(\int_{q^2_{\text{min}}}^{q^2_{\text{max}}} \frac{1}{\Gamma} \frac{d^4 \Gamma}{dq^2 d \cos \theta_l d \cos \theta_K d\phi} dq^2 \right)
$$

 γ ³³ where the signal angular distribution is averaged over the q^2 -bin. The back-⁷⁹⁴ ground PDF is given by:

$$
P_{\text{bkg}}(m_{K^{+}\pi^{-}\mu^{+}\mu^{-}}, \vec{\Omega}_{i}, \vec{\lambda}_{\text{bkg}}) = E(m_{K^{+}\pi^{-}\mu^{+}\mu^{-}}|p_{0}) \times \left(\sum_{k=0}^{n} c_{k}^{l} T_{k}(\cos \theta_{l})\right) \left(\sum_{k=0}^{n} c_{k}^{K} T_{k}(\cos \theta_{K})\right) \left(\sum_{k=0}^{n} c_{k}^{b} T_{k}(\phi)\right)
$$

⁷⁹⁵ where the background angular distribution is parametrised as the product of ⁷⁹⁶ three Chebychev polynomials (of the first kind).

⁷⁹⁷ Details of the fit performed in data and of the error computation are given ⁷⁹⁸ in Sec. [15.](#page-75-0)

⁷⁹⁹ 9.7 Free parameters in the likelihood fit

⁸⁰⁰ In addition to the 4 physics parameters, there are 8 further free parameters ⁸⁰¹ in each of the likelihood fits. The free parameters are summarised in the ⁸⁰² Table. [12.](#page-54-0)

Table 12: Description of the free parameters in the log-likelihood fit for the angular observables.

803 10 Data-MC corrections

 The MC samples used to estimate the contribution from peaking backgrounds and detector / selection acceptance effects have been corrected for data- MC differences. These differences are corrected for in two different ways, depending on whether or not the correction is required before the application of the BDT. If the variable is not present in the BDT, the MC is re-weighted to account for data-MC differences. If the variable is used in the BDT the variable is adjusted (or replaced) before the application of the BDT. Variables that are used in the BDT include the:

 \bullet impact parameter of the B^0 and the four final state particles;

• kaon and pion identification ($\text{DLL}_{K\pi}$) of the K^+ and π^- ;

$$
\bullet \quad \bullet \quad \text{muon}\ \text{DLL}_{\mu\pi} \ \text{of the} \ \mu^+ \ \text{and} \ \mu^-.
$$

 There are differences in the impact parameter resolution between data and the simulation, which have been observed by several analysis. In order to account for these differences, the track states of each of the simulated tracks used to reconstruct the offline selected candidates are smeared using 819 the Phys/TrackSmearing tool.

⁸²¹ The pion and kaon identification performance of the LHCb detector is studied using the RICH PIDCalib tools in data using samples of genuine pi-⁸²³ ons and kaons selected from the decays $D^{*+} \to D^0 \pi^+$ where $D^0 \to K^- \pi^+$. In order to properly account for the differences in PID performance, the DLL of pions and kaons in the MC are replaced by sampling from the various DLL distributions of genuine kaon or pions in the data. For each kaon and $\frac{1}{827}$ pion a new value of $\text{DLL}_{K-\pi}$ is assigned according to the momentum and pseudo-rapidity of the particle. This new DLL value is then used in the BDT. For the DLL variables for muons, an analogous procedure is used, but aso using a tag-and-probe approach with $B^+ \to J/\psi K^+$, where $J/\psi \to \mu^+ \mu^ \sin$ in data. The $B^+ \to J/\psi K^+$ sample is obtained from the stripping line MuIDCalib JpsiKFromBNoPIDNoMIP, which does not apply any cut on a probe track.

 In addition the MC is re-weighted to account for differences in the rel- ative tracking efficiency between data and MC and for differences in the efficiency of the IsMuon requirement (which is applied in the Stripping). Fi- nally the MC samples have been re-weighted to account for differences in the occupancy between data and MC (using the size of the Rec/Track/Best container).

 The BDT response after the application of the trigger, stripping and ⁸⁴¹ offline selection, for $B^0 \to K^{*0} J/\psi$ candidates is shown in Fig. [14.](#page-56-0) This demonstrates that there is in general an excellent agreement between the MC and data (for the control channel) after the MC tuning procedure, whereas the agreement before the MC tuning is poor (see also Appendix. [A.1\)](#page-150-0).

(a) BDT output distribution

Figure 14: BDT response for offline selected candidates $B^0 \to J/\psi K^{*0}$ in the data and the MC. The three distributions are Data (Black), data-corrected simulated events (Red) and uncorrected simulated events (Green)

⁸⁴⁵ Other data/MC comparisons can be found in the appendix of this note ⁸⁴⁶ (see Sec. [A\)](#page-146-0).

847 11 Acceptance correction

⁸⁴⁸ The reconstruction, trigger and selection each bias the angular and q^2 dis-⁸⁴⁹ tributions that are to be measured. For example, for muon candidates to be ⁸⁵⁰ reconstructed, they must have at least the 3 GeV/c momentum required to ⁸⁵¹ traverse the iron muon filter and to leave hits in all the muon stations. This δ ₈₅₂ has the effect of warping the cos θ_l distribution, removing candidates with 853 cos θ_l close to one. Similarly, in $\cos \theta_K$, the impact parameter (IP) require-⁸⁵⁴ ments made in the trigger algorithms remove events with extreme values of 855 cos θ_K , as very forward-going hadrons tend to have lower IP. A second effect $\sin \cos \theta_K$ originates from the low boost of backward-going hadrons at ex- $\frac{1}{857}$ treme cos θ_K , given the minimum momentum required to traverse the dipole 858 magnet and tracking stations. The acceptance effect in $\cos \theta_K$ is asymmetric 859 as the kaon tends to be more energetic than the pion after the boosts.

⁸⁶⁰ In order to correctly determine the physics parameters that describe the ⁸⁶¹ angular distribution, these 'acceptance effects' must be accounted for. In the ⁸⁶² present analysis this is done by weighting the events that are selected by the ⁸⁶³ inverse of their efficiency in the maximum-likelihood fit to the angular (or q^2 -) ⁸⁶⁴ distribution. The use of event-by-event weights to correct for the acceptance, ⁸⁶⁵ rather than describing the acceptance in the fit, is driven by the variation ⁸⁶⁶ of the angular efficiency with q^2 . This variation in q^2 can be significant ϵ_{667} compared to the size of the q^2 -bins used in the analysis. Consequently it is not ⁸⁶⁸ possible to include a single PDF that describes the shape of the acceptance ⁸⁶⁹ in $\cos \theta_l$, $\cos \theta_K$ and ϕ in a fit to the angular distribution of the daughters.

⁸⁷⁰ A factorised approach has been adopted for the angular efficiency. The ⁸⁷¹ factorised approach treats the angular efficiency as a function of $\cos \theta_l$, $\cos \theta_K$ ⁸⁷² and ϕ independently. The efficiency in q^2 does not factorise and is instead ⁸⁷³ binned in $0.5 \,\text{GeV}^2/c^4$ q^2 -bins, for the region above $6.0 \,\text{GeV}^2/c^4$. At low q^2 , ⁸⁷⁴ where the acceptance varies more rapidly, $0.1 \text{ GeV}^2/c^4$ q^2 -bins are taken for ⁸⁷⁵ the region below $1.0 \,\text{GeV}^2/c^4$, and $0.2 \,\text{GeV}^2/c^4$ q^2 -bins elsewhere. This bin δ size is more than four times narrower than the smallest of the q^2 -bins used $\sum_{n=1}^{\infty}$ in the analysis. In each of these small q^2 -bins a different angular efficiency is ⁸⁷⁸ used to calculate the event weights.

879 After applying the trigger and the full offline selection, approximately ⁸⁸⁰ two million events remain in the large $B^0 \to K^{*0} \mu^+ \mu^-$ phase-space sample ⁸⁸¹ for estimating the acceptance correction. These events were generated flat ⁸⁸² in $\cos \theta_l$, $\cos \theta_K$ and ϕ and have a falling distribution in q^2 .

Figure 15: The reconstruction, trigger and offline selection pseudo-efficiencies as a function of the kinematic variables in $B^0 \to K^{*0} \mu^+ \mu^-$ SM MC. The variation of the angular efficiencies at low- and high- q^2 is included for reference.

883 11.1 Exploiting symmetries in the acceptance correc- \lim_{884} tion

⁸⁸⁵ To maximise the available MC statistics, the efficiency distribution is folded 886 in $\cos \theta_l$ and in ϕ . The $\cos \theta_l$ distribution is assumed to be symmetric about 887 cos $\theta_l = 0$. For this assumption not to be true there would need to be both ⁸⁸⁸ a large difference in the efficiency for μ^+ and μ^- (that doesn't cancel when ⁸⁸⁹ the dipole field is flipped) and a large $\cal CP$ asymmetry between B^0 and \bar{B}^0 .

890 The efficiency in the ϕ angle is assumed to be symmetric with respect to 891 the translation of $\phi \to \phi + \pi$. The combination of folding the efficiency in ϕ δ_{892} and in $\cos \theta_l$ increases the effective MC statistics by a factor of four.

893 11.2 Testing the acceptance correction

⁸⁹⁴ The acceptance correction is verified on MC and later cross-checked using ⁸⁹⁵ $B^0 \to K^{*0} J/\psi$ data (Sec. [13\)](#page-71-0). Offline selected phase space MC events are ⁸⁹⁶ used to verify the performance on MC. The generator level distributions of ⁸⁹⁷ the phase-space events are flat in $\cos \theta_l$, $\cos \theta_K$ and ϕ and hence provide a 898 good test of the re-weighting. For a given bin in the angular variables, \mathcal{B} , ⁸⁹⁹ the number of events after the acceptance correction is:

$$
N_b = \sum_{i=0}^{N} \frac{1}{\varepsilon_i(\cos\theta_l, \cos\theta_K, \phi, q^2)}
$$

⁹⁰⁰ If the acceptance correction correctly reproduces the effects of the trigger, ω reconstruction, stripping and offline selection then, the distribution of N_b ⁹⁰² across the angular variables should be the same as the generator level distri-⁹⁰³ bution.

 The performance of the factorised acceptance correction on an indepen- dent sample of phase space M is shown in Fig. [16.](#page-60-0) The generator level ⁹⁰⁶ distributions for $\cos \theta_l$, $\cos \theta_K$, ϕ and q^2 are compared to the distributions after the offline selection, reconstruction, trigger and stripping and to the distribution of candidates weighting for the expected acceptance effect. Af-⁹⁰⁹ ter the acceptance correction the candidates are flat in $\cos \theta_l$, $\cos \theta_K$ and ϕ and accurately reproduce the generator level distributions.

Figure 16: The effect of the factorised acceptance correction as a function of the angular variables, $\cos \theta_l$, $\cos \theta_K$, ϕ and of q^2 . Figs (a,b,c,d) show the original distribution before correction (red), the corrected distribution (black) and the expected distribution (green). The corrected distributions match the expected distributions, with increased corrections both towards extreme $\cos \theta_l$ values and the low q^2 region.

911 11.3 Systematic uncertainty associated with the ac-⁹¹² ceptance correction

⁹¹³ No evidence is seen indicating that the angular efficiency in each of the 0.5 GeV^2/c^4 q^2 -bins can not be factorised into three one-dimensional angular ⁹¹⁵ efficiencies. It is however very difficult to quantify the level to which these ⁹¹⁶ assumptions hold, beyond stating that it appears to hold at the level of 917 ∼ 5 – 10% (see Appendix [B\)](#page-151-0).

⁹¹⁸ Practically, a conservative estimate for the systematic uncertainty on the ⁹¹⁹ acceptance correction is estimated by systematically varying the acceptance exo correction in $\cos \theta_l$, $\cos \theta_K$ and ϕ by 5%, in a way that would introduce the ⁹²¹ maximum bias in the physics parameters: e.g. by fluctuating the efficiency 922 of events with $\cos \theta_l \sim \pm 1$ up or down by 5% to introduce a bias in A_{FB} or 923 events with $\cos \theta_K \sim 0$ up or down by 5% to bias F_L .

$_{\mathfrak{p}_{24}}$ 12 Validation of the angular analysis with toy- $_{925}$ MC

⁹²⁶ This section details the results of a toy-MC studies with the expected signal 927 and background yield in 1 fb⁻¹ for $0.1 < q^2 < 2.0$ GeV²/ c^4 . This q^2 range has ⁹²⁸ been chosen for illustrative purposes and similar results are achieved in the ⁹²⁹ other q^2 bins (with the caveats outlined below). Toy datasets were generated 930 with A_{FB} , F_{L} , S_3 and S_9 values as measured in Ref. [\[8\]](#page-204-3) $(A_{FB} = -0.02, F_L =$ 931 0.36, $A_T^2 = -0.16$ and $S_9 = 0.06$). Five hundred datasets were generated.

⁹³² An additional 500 datasets were generated including an S-wave compo-933 nent with parameter values $A_S = -0.2$ and $F_S = 0.08$, which correspond to ⁹³⁴ the values seen in $B^0 \to K^{*0} J/\psi$. In each case, the fit pdf did not contain an 935 S-wave component, effectively constraining $A_S = 0$ and $F_S = 0$. This tests 936 the impact of the S-wave component on the fit.

 Signal candidates have been accept-rejected according to the acceptance correction described in Sec. [11](#page-57-0) and re-weighted in the subsequent fit. The effect of the weighted data on the error matrix was corrected using a 'sum of weights' correction provided by RooFit. Background events were generated flat in the angles but were modelled with a second order polynomial in the ⁹⁴² fit.

⁹⁴³ Pulls have been calculated from the difference between the generated 944 value of A_{FB} , F_L , S_3 and S_9 , and the value returned by the likelihood fit, ⁹⁴⁵ divided by the parabolic error from the covariance matrix of the likelihood ⁹⁴⁶ fit.

$_{947}$ 12.1 MC validation for the observables ⁹⁴⁸ A_{FB} , F_{L} , S_3 and S_9 .

949 The distribution of fit results for each of the observables A_{FB} , F_L , S_3 and S_9 950 are shown in Fig. [17](#page-63-0) (A_{FB} and F_L), Fig. [18](#page-64-0) (S_3 and S_9). The experimental ⁹⁵¹ uncertainty, pull centre and pull width for each observable are summarised ⁹⁵² in Table. [13.](#page-64-1)

Figure 17: Distribution of fitted values (left), and pull distribution (right), for the observables A_{FB} (top) and F_{L} (bottom) for 500 toy MC datasets when fitting for A_{FB} and S_9 .

Observable	Experimental	Pull	Pull
	Uncertainty	Centre	Width
$A_{\rm FB}$	0.113 ± 0.005	0.083 ± 0.041	0.899 ± 0.029
$F_{\rm L}$	0.091 ± 0.004	0.029 ± 0.042	0.935 ± 0.031
S_3	0.100 ± 0.004	-0.010 ± 0.042	0.930 ± 0.031
S_9		0.093 ± 0.004 -0.007 \pm 0.038	0.845 ± 0.027

Table 13: Results of fits to 500 toy experiments for the observables A_{FB} , F_L , S_3 and S_9 .

Figure 18: Distribution of fitted values (left), and pull distribution (right), for the observables S_3 (top) and S_9 (bottom) for 500 toy MC datasets when fitting for A_{FB} and S_9 .

⁹⁵³ The distribution of fit results, when generating with $B^0 \to K^{*0} J/\psi$ -like 954 swave, for each of the observables are shown in Fig. [19](#page-65-0) (A_{FB} and F_L), Fig. [20](#page-66-0) 955 (S_3 and S_9). The experimental uncertainty, pull centre and pull width for ⁹⁵⁶ each observable are summarised in Table. [14.](#page-66-1)

Figure 19: Distribution of fitted values (left), and pull distribution (right), for the observables A_{FB} (top) and F_{L} (bottom) for 500 toy MC datasets when fitting for A_{FB} and S_9 in the presence of a $B^0 \to K^{*0} J/\psi$ -like s-wave.

Observable	Experimental	Pull	Pull
	Uncertainty	Centre	Width
$A_{\rm FB}$	0.120 ± 0.005	$-0.044 \pm 0.043 \pm 0.951 \pm 0.032$	
$F_{\rm L}$	0.089 ± 0.004	0.100 ± 0.041	0.900 ± 0.030
S_3	0.099 ± 0.004	0.117 ± 0.042	0.934 ± 0.031
S_9	0.098 ± 0.004	-0.065 ± 0.043	0.953 ± 0.032

Table 14: Results of fits to 500 toy experiments including the s-wave component for the observables $A_{\rm FB},\,F_{\rm L},\,S_3$ and $S_9.$

Figure 20: Distribution of fitted values (left), and pull distribution (right), for the observables S_3 (top) and S_9 (bottom) for 500 toy MC datasets when fitting for A_{FB} and S_9 in the presence of a $B^0 \to K^{*0} J/\psi$ -like s-wave.

957 12.2 MC validation for the transverse $\begin{array}{lll} \text{\bf \textit{obs}} & \text{\bf \textit{obs}}\ \text{\bf \textit{ex}} & \text{\bf \textit{M}}_{\text{R}}^{Re},\ F_{\text{L}},\ A_{\text{T}}^{2}\ \text{\bf \textit{and}} & A_{\text{T}}^{Im} \end{array}$

⁹⁵⁹ The study outlined above was repeated, however the fitting scheme was ⁹⁶⁰ changed to fit for the observables A^{Re}_T , F_L , A^2_T and A^{Im}_T .

⁹⁶¹ The distribution of fit results for each of the observables are shown in ⁹⁶² Fig. [21](#page-67-0) (A_T^{Re} and F_L), Fig. [22](#page-68-0) (A_T^2 and A_T^{Im}). The experimental uncertainty, ⁹⁶³ pull centre and pull width for each observable are summarised in Table. [15.](#page-68-1)

Figure 21: Distribution of fitted values (left), and pull distribution (right), for the observables A_{T}^{Re} (top) and F_{L} (bottom) for 500 toy MC datasets when fitting for A^{Re}_T and A^{Im}_T .

Observable	Experimental	Pull	Pull
	Uncertainty	Centre	Width
A^{Re}_T	0.235 ± 0.010	0.074 ± 0.039	0.876 ± 0.028
$F_{\rm L}$	0.092 ± 0.004	0.028 ± 0.041	0.913 ± 0.030
$A^2_{\rm T}$	0.315 ± 0.014	-0.010 ± 0.041	0.900 ± 0.030
$\bar{A}_{\rm T}^{\bar{I}\bar{m}}$	0.294 ± 0.013	-0.015 ± 0.038	0.833 ± 0.027

Table 15: Results of fits to 500 toy experiments for the observables $A_{\rm T}^{Re}$, $F_{\rm L}$, $A_{\rm T}^2$ and $A_{\rm T}^{Im}$.

Figure 22: Distribution of fitted values (left), and pull distribution (right), for the observables $A_{\rm T}^2$ (top) and $A_{\rm T}^{Im}$ (bottom) for 500 toy MC datasets when fitting for A^{Re}_T and A^{Im}_T .

⁹⁶⁴ The distribution of fit results, when generating with $B^0 \to K^{*0} J/\psi$ -like ⁹⁶⁵ swave, for each of the observables are shown in Fig. [23](#page-69-0) ($A_{\rm T}^{Re}$ and $F_{\rm L}$), Fig. [24](#page-70-0) ⁹⁶⁶ ($A_T²$ and A_T^{Im}). The experimental uncertainty, pull centre and pull width for ⁹⁶⁷ each observable are summarised in Table. [16.](#page-70-1)

Figure 23: Distribution of fitted values (left), and pull distribution (right), for the observables A_{T}^{Re} (top) and F_{L} (bottom) for 500 toy MC datasets when fitting for $A_{\rm T}^{Re}$ and $A_{\rm T}^{Im}$ in the presence of a $B^0 \to K^{*0} J/\psi$ -like s-wave.

Observable	Experimental	Pull	Pull
	Uncertainty	Centre	Width
A^{Re}_{Γ}	0.256 ± 0.011	-0.059 ± 0.042	0.938 ± 0.031
$F_{\rm L}$	0.089 ± 0.004	0.092 ± 0.040	0.895 ± 0.029
$A^2_{\rm T}$	0.314 ± 0.014	0.100 ± 0.042	0.925 ± 0.031
$\tilde{A_{\text{T}}^{Im}}$	0.318 ± 0.014	-0.077 ± 0.042	0.923 ± 0.031

Table 16: Results of fits to 500 toy experiments including the s-wave component for the observables $A_{\rm T}^{Re}$, $F_{\rm L}$, $A_{\rm T}^2$ and $A_{\rm T}^{Im}$.

Figure 24: Distribution of fitted values (left), and pull distribution (right), for the observables $A_{\rm T}^2$ (top) and $A_{\rm T}^{Im}$ (bottom) for 500 toy MC datasets when fitting for $A_{\rm T}^{Re}$ and $A_{\rm T}^{Im}$ in the presence of a $B^0 \to K^{*0} J/\psi$ -like s-wave.

⁹⁶⁸ 13 Validation of the angular analysis with $B^0\rightarrow$ $\delta^{\scriptscriptstyle \mathrm{sgs}} \qquad \qquad K^{*0} J\!/\!\psi$

⁹⁷⁰ The full fitting strategy for $B^0 \to K^{*0} \mu^+ \mu^-$ has been validated using $B^0 \to$ $K^{*0}J/\psi$ candidates. The angular distribution of these candidates can be well ⁹⁷² described by the same angular distributions (in one, two or three dimensions) ⁹⁷³ that were discussed for $B^0 \to K^{*0} \mu^+ \mu^-$. The only differences arise from hav- $_{974}$ ing $A_{FB} = 0$ and a single set of amplitudes (with no differentiation between ⁹⁷⁵ left- and right- handedness). These differences have no impact on the form ⁹⁷⁶ of the angular distribution.

⁹⁷⁷ A fit to the full statistics of the $B^0 \to K^{*0} J/\psi$ sample is described in 978 Sec. [13.2.](#page-72-0) A more appropriate comparison to $B^0 \to K^{*0} \mu^+ \mu^-$ is made by 979 then splitting the large $B^0 \to K^{*0} J/\psi$ sample in the data into small 100 ⁹⁸⁰ event sub-samples, which loosely corresponds to the expected statistics in 981 the least occupied q^2 bin.

982 13.1 Comparison with results from full angular analy-⁹⁸³ sis at LHCb and BaBar

⁹⁸⁴ The $B^0 \to K^{*0} J/\psi$ transversity amplitudes from a full angular analysis at ⁹⁸⁵ LHCb and BaBar can be found in Tables [17](#page-71-1) and [18](#page-72-1) respectively. Ignoring 986 the S-wave contribution this gives values of: F_L of 0.57 and 0.56 respectively; 987 A_T^2 of -0.14 and 0.05 respectively and S_9 of -0.07 and -0.08 respectively.

	Including	No
	S -wave	S -wave
$ A_{\parallel} ^2$	0.252 ± 0.020	0.253 ± 0.020
$ A_{\perp} $	0.178 ± 0.022	0.191 ± 0.019
$-\delta_0$	-2.87 ± 0.11	-2.82 ± 0.12
	3.02 ± 0.10	3.07 ± 0.09

Table 17: $B^0 \to K^{*0} J/\psi$ transversity amplitudes from a full angular analysis with 36 pb^{-1} of integrated luminosity at LHCb (from Ref. [\[20\]](#page-205-4)).
	No S -wave
$ A_{\parallel} ^2$	
$ A_\perp ^2$	$\begin{array}{c} 0.211\pm 0.010\pm 0.006\\ 0.233\pm 0.010\pm 0.005 \end{array}$
$\delta_{\parallel}-\delta_0$	$-2.93 \pm 0.08 \pm 0.04$
	$2.91 \pm 0.05 \pm 0.03$

Table 18: $B^0 \to K^{*0} J/\psi$ transversity amplitudes from a full angular analysis performed by BaBar (from Ref. [\[21\]](#page-205-0)).

$_{\text{\tiny{988}}}$ $\,13.2\quad$ Fitting the full $B^{0}\rightarrow J\!/\!\psi\, K^{*0}\; \text{sample}$

989 The full sample of $B^0 \to J/\psi K^{*0}$ events were fitted, with and without an 990 S-wave component, to extract the observables A_T^R , F_L , A_T^2 and A_T^I (and A_S 991 and F_S). A comparison with the results from the BaBar collaborations full ⁹⁹² angular analysis of $B^0 \to J/\psi K^{*0}$ provides a powerful validation of the ⁹⁹³ fitting procedure. The fit results are summarised in Table. [19.](#page-72-0) The values ⁹⁹⁴ obtained in the present study are in good agreement with those from BaBar, 995 with $A_{\rm FB}\sim 0$. Note, the errors are not comparable on $A_{\rm T}^2$ because of the use ⁹⁹⁶ of a partial angular analysis compared to the full angular analysis by BaBar.

Observable	Present result	Present result	BaBar value
	$(w / S$ -wave)	$(w/\text{o} S\text{-wave})$	$(w/o S-wave)$
A^{Re}_T	0.009 ± 0.007	0.009 ± 0.007	N/A
F_L	0.561 ± 0.002	0.552 ± 0.002	0.56 ± 0.03
A_T^2	0.042 ± 0.015	0.029 ± 0.013	0.05 ± 0.03
A_T^{Im}	-0.362 ± 0.016	-0.313 ± 0.014	-0.34 ± 0.05
A_S	-0.174 ± 0.003	N/A	N/A
F_S	0.078 ± 0.006	N/A	N/A

Table 19: Comparison of $B^0 \to J/\psi K^{*0}$ fit results from the present study, with and without the S-wave component, with the BaBar result from Ref. [\[21\]](#page-205-0).

997 Note, there is no first principle reason to expect $B^0 \to K^{*0} J/\psi$ to have 998 $A_{\rm T}^2 = 0$. It is non-zero in QCD factorisation [\[22\]](#page-205-1).

999 The one-dimensional projections of the $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, 1000 $\cos \theta_K$ and ϕ distributions with the fitted PDF are shown in Fig. [25.](#page-73-0) The ¹⁰⁰¹ sinusoidal variation of ϕ results from a non-zero value of S_9 (and A_T^{Im}). No 1002 asymmetry is seen in $\cos \theta_l$, but a significant asymmetry is visible in $\cos \theta_K$. 1003 This asymmetry results from interference of the $K^{*0}(892)$ with a broad $K^+\pi^-$ ¹⁰⁰⁴ S-wave.

Figure 25: 1D projections of the four fitted quantities for the full $B^0 \to J/\psi$ K^{*0} dataset; (a) mass, (b) $\cos(\theta_L)$, (c) $\cos(\theta_K)$ and (d) ϕ . The fitted pdf (blue), the signal-only pdf (green) and background-only pdf (red dash) are overlaid.

1005 The disagreement at $\cos \theta_K \sim -1$ in Fig. [25](#page-73-0) is not understood. The $_{1006}$ disagreement in the shape is at the level of $\pm 5\%$ and is covered as a systematic 1007 uncertainty. No such disagreement is seen in $\cos \theta_l$ and ϕ .

1008 13.3 Validation using 100 event sub-samples

 A further check of the fitting procedure was performed by splitting the full $B^0 \to J/\psi K^{*0}$ dataset into sub-samples. For this study, 1159 sub-samples of 100 events were used, corresponding roughly to the expected statistics ¹⁰¹² in the least occupied q^2 bin $(2 < q^2 < 4.3 \text{ GeV}^2/c^4)$. By fitting each sub- sample individually, the experimental precision and pull distributions in each observable could be analysed in the data. Due to the low level of background in each sub-sample (we expect around 5 background events in the upper

Observable	Experimental	Pull	Pull
	Uncertainty	Centre	Width
A^{Re}_{T}	0.249 ± 0.006	0.017 ± 0.034	0.978 ± 0.024
F_L	0.097 ± 0.002	-0.206 ± 0.041	1.160 ± 0.029
A_T^2	0.495 ± 0.017	-0.015 ± 0.032	0.903 ± 0.022
$\tilde{A_{T}^{Im}}$	0.480 ± 0.017	0.207 ± 0.028	0.811 ± 0.020

Table 20: Results of 1159 fits to 100 event sub-samples of the $B^0 \to J/\psi K^{*0}$ dataset neglecting the S-wave component.

 B^0 mass sideband) the polynomial used to model the angular shape of the background events was reduced from second to first order. The pull value for each sub-sample was calculated using the central value obtained from 1019 an equivalent fit to the full $B^0 \to J/\psi K^{*0}$ dataset. Fits with results at a physical boundary are removed, as their errors can not be trusted.

 The results of this study, when the S-wave terms are neglected is sum-¹⁰²² marised in Table. [20.](#page-74-0) The pull distribution of $A_T²$ and A_T^{Im} are biased. This bias occurs because the experimental uncertainty on the observables is large compared to the parameter range.

1025 14 Summary of validation studies

1026 The validation studies with toy-MC and $B^0 \to K^{*0} J/\psi$ highlight some of the ¹⁰²⁷ difficulties of this analysis:

 • The impact of the boundaries described in Sec. [9.5](#page-51-0) is clearly evident.In the toy studies the boundaries show up as a non-Gaussian distribution for the results of the toys - which in turn results in pull distributions that have a width larger or smaller than one.

¹⁰³² • In some cases the allowed range of the parameters is small compared ¹⁰³³ to the uncertainty on the fits (e.g. A_T^2 for large F_L).

 This may make it look like the fit performance on toy-MC is poor. It is clear that it is not always suitable to trust the covariance matrix returned by MINUIT as an estimate of the errors. This is particularly true for any parameter that is close to a boundary.

¹⁰³⁸ 15 Angular analysis fit results

1039 This section details the result of the angular fits in the six-plus-one q^2 -bins. 1040 Results of fits for both sets of observables, $\{A_{FB}, F_L, S_3, S_9 \text{ and } A_9\}$ and ¹⁰⁴¹ $\{A_{\rm T}^{Re}, F_{\rm L}, A_{\rm T}^{Im} \text{ and } A_{\rm T}^{2}\}$, are detailed.

¹⁰⁴² The central values for the two sets of observables are shown in Table. [21](#page-75-0) ¹⁰⁴³ and Table. [22](#page-75-1) respectively.

q^2 (GeV ² / c^4)			A_{FB} F_{L} S_3 S_9		A_9
$0.10 < q^2 < 2.00$	-0.02 ± 0.37			-0.04 0.05	0.12
$2.00 < q^2 < 4.30$	$-0.20 \mid 0.74$		-0.04	-0.03 0.06	
$4.30 < q^2 < 8.68$		0.16 ± 0.57	0.08	0.01	-0.13
$10.09 < q^2 < 12.86$		0.28 ± 0.48	-0.16	-0.01	-0.00
$14.18 < q^2 < 16.00$		$0.51 \, \, 0.33$	0.03	0.00	-0.06
$16.00 < q^2 < 19.00$	0.30	0.37	-0.22	0.06	-0.00
$1.00 < q^2 < 6.00$	-0.17 ± 0.65		0.03		0.07 0.03

Table 21: Angular analysis central values for the observables $A_{\text{FB}},$ $F_{\text{L}},$ $S_{3},$ S_{9} and $A₉$.

q^2 (GeV ² / c^4)	$A^{Re}_{\rm T}$	$F_{\rm L}$	$A^2_{\rm T}$	$A_{\rm T}^{Im}$
$\frac{1}{0.10 \leq q^2} < 2.00$	-0.05	0.37	-0.14	0.16
$2.00 < q^2 < 4.30$	-1.00	0.74	-0.29	-0.23
$4.30 < q^2 < 8.68$	0.50	0.57	0.36	0.05
$10.09 < q^2 < 12.86$	0.71	0.48	-0.60	-0.06
$14.18 < q^2 < 16.00$	1.00	0.33	0.07	0.02
$16.00 < q^2 < 19.00$	0.64	0.37	-0.71	0.18
$1.00 < q^2 < 6.00$	-0.66	0.65	0.17	0.41

Table 22: Angular analysis central values for the observables $A_{\rm T}^{Re}$, $F_{\rm L}$, $A_{\rm T}^{Im}$ and $A_{\rm T}^2$

¹⁰⁴⁴ 15.1 Error estimation

 The estimation of parameter errors is complicated by the presence of math- ematical boundaries in the fit. This is described in Sec. [9.](#page-48-0) To negate the boundary effects two different methods are pursued when estimating the statistical uncertainties on the angular observables: Feldman-Cousins and MINOS-like $\Delta LL = \pm \frac{1}{2}$ ¹⁰⁴⁹ MINOS-like $\Delta LL = \pm \frac{1}{2}$ from the profile-likelihood (in the allowed parame-ter range).

¹⁰⁵¹ 15.1.1 Feldman-Cousins estimate of the confidence interval

 The Feldman-Cousins technique for determining confidence intervals is de- scribed in Ref. [\[23\]](#page-205-2). The application of Feldman-Cousins to estimate the 68% confidence interval is described below, using F_L as an example. The same 1055 process is applied for all four observables in the six-plus-one q^2 bins.

¹⁰⁵⁶ First a fit is performed to estimate the best-fit values for all of the parame-1057 ters, including F_L and the nuisance parameters, λ . The nuisance parameters 1058 include the other angular observables, A_{FB} , A_{Im} and S_3 . This set of fit-¹⁰⁵⁹ parameters will be denoted \hat{F}_{L} and $\hat{\lambda}$. Next a scan is performed over the full 1060 range of F_L ($0 < F_L < 1$). For each value of F_L , the likelihood ratio:

$$
R^i = \frac{L(\vec{x}|F^i_{\rm L}, \hat{\hat{\lambda}^i})}{L(\vec{x}|\hat{F}_{\rm L}, \hat{\lambda})}
$$

¹⁰⁶¹ is calculated, where $\hat{\lambda}^i$ is used to represent the best-fit value for the nuisance ¹⁰⁶² parameters with $F_{\rm L}$ fixed to be $F_{\rm L}^{i}$.

¹⁰⁶³ At every point in the parameter space 500 toys are generated from F_{L}^{i} and ¹⁰⁶⁴ $\hat{\lambda}^i$, and the likelihood ratio is calculated for each toy. A confidence interval ¹⁰⁶⁵ is then determined from the fraction of toys that have $R_{\text{toy}}^i > R_{\text{data}}^i$.

 Toy-data sets are accept-rejected and then re-weighted to account for the angular acceptance. Without simulating the q^2 -dependence it is not possible to fully reproduce the acceptance effect seen in data. Instead, the acceptance 1069 distribution is assumed to be that of the average q^2 -value in the q^2 -bin. The toy-data sets are generated with the maximum likelihood estimate values obtained from the fit to the data with the parameter of interest fixed. When fitting a penalty term has been included in the log-likelihood to penalise com- binations of parameters that are outside the mathematically allowed region of parameter space.

¹⁰⁷⁵ 15.1.2 Potential problems with FC near boundaries

 Problems have been seen with the Feldman-Cousins intervals if parameters are near a mathematical boundary. This is true in several regions of param-¹⁰⁷⁸ eter space, most notably in the $2 < q^2 < 4.3 \text{ GeV}^2/c^4 q^2$ -bin. Whilst FC deals well with having the parameter of interest near a boundary, the fits to the toy-MC can have significant problems if one of other parameters is near the boundary. In cases like this, the minimisation of MINUIT has trouble converging to the correct minimum.

¹⁰⁸³ If the MINUIT convergence fails, or the minima exists outside of a valid ¹⁰⁸⁴ region of phase-space (i.e. where either the signal or background angular

pdfs go negative), an alternative sequential minimisation is performed.

15.1.3 Falling back on sequential minimisation

 The sequential minimisation is simply a sequence of MINUIT fits where the initial parameters of each fit in the sequence are set to the final values of the previous fit. The initial parameters for the first fit in the sequence are set to sensible values. At the start of each of the fits in the sequence, the partial derivatives of the likelihood are computed to estimate sensible step sizes for each of the floating parameters. The sequence is ended once the change in $_{1093}$ likelihood value between two fits is less than 10^{-6} , or the sequence is 20 fits long.

 In some cases it is possible, due to boundary effects and/or parameter correlations, that the sequential fit will fail to converge or converge to a local minima. To protect against this, the sequential minimisation is performed multiple times with a Gaussian fluctuation of the initial signal parameters (the parameter values are constrained to the valid region of the phase-space). The sequential minimisation that yields the best likelihood value is chosen as the best fit result for the signal parameters.

15.2 Candidate distributions

1103 The distribution of events in mass, $\cos \theta_l$, $\cos \theta_K$ and ϕ in the six q^2 -bins is given in Figs. [26](#page-78-0)[-32.](#page-84-0) The distribution of events in the signal mass window and upper mass sideband is shown in Figs. [33-](#page-85-0)[39.](#page-91-0)

Figure 26: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $0.1 < q^2 < 2 \text{ GeV}^2/c^4$ in the full mass range. The blueline is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 27: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $2 < q^2 < 4.3 \,\text{GeV}^2/\text{c}^4$ in the full mass range. The blueline is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 28: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $4.3 < q^2 < 8.68 \,\text{GeV}^2/\text{c}^4$ in the full mass range. The blue-line is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 29: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $10.09 < q^2 < 12.86 \,\text{GeV}^2/\text{c}^4$ in the full mass range. The blue-line is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 30: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $14.18 < q^2 < 16 \,\text{GeV}^2/c^4$ in the full mass range. The blue-line is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 31: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $16 < q^2 < 19 \,\text{GeV}^2/c^4$ in the full mass range. The blueline is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 32: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $1 < q^2 < 6 \text{ GeV}^2/c^4$ in the full mass range. The blue-line is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 33: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $0.1 < q^2 < 2 \,\text{GeV}^2/c^4$ in the signal mass window (left) and upper mass sideband (right). The blue-line is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 34: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $2 < q^2 < 4.3 \,\text{GeV}^2/c^4$ in the signal mass window (left) and upper mass sideband (right). The blue-line is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 35: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $4.3 < q^2 < 8.68 \,\text{GeV}^2/\text{c}^4$ in the signal mass window (left) and upper mass sideband (right). The blue-line is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 36: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $10.09 < q^2 < 12.86 \,\text{GeV}^2/\text{c}^4$ in the signal mass window (left) and upper mass sideband (right). The blue-line is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 37: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $14.18 < q^2 < 16 \,\text{GeV}^2/c^4$ in the signal mass window (left) and upper mass sideband (right). The blue-line is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 38: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $16 < q^2 < 19 \,\text{GeV}^2/c^4$ in the signal mass window (left) and upper mass sideband (right). The blue-line is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

Figure 39: The $K^+\pi^-\mu^+\mu^-$ invariant mass, $\cos\theta_l$, $\cos\theta_K$ and ϕ distribution of candidates with $1 < q^2 < 6 \text{ GeV}^2/c^4$ in the signal mass window (left) and upper mass sideband (right). The blue-line is a fit to the data. The green-line is the signal component and the red-dashed line is the background component.

15.3 Comparison of interval estimates

1107 A comparison of the confidence and credible intervals on A_{FB} , F_L , §3, §9 and A₉ is given in Tables. [23](#page-92-0) - [27](#page-93-0). In general there is good agreement between the result obtained using the Feldman-Cousins technique and by integrating a 68% credible interval of the profile-likelihood. Differences arise close to the mathematical boundary, due to the different treatment of the boundary effect in the two techniques. In several bins it was not possible to obtain MINOS error estimates directly from MINUIT for the lower or upper part of ¹¹¹⁴ the interval. Most notably in the second and fifth q^2 bin where A_{FB} is very close to the edge of the mathematically defined parameter space.

 The confidence and credible intervals can be seen in the plots contained in the webspace area at [this location](http://www.hep.ph.ic.ac.uk/~cp309/FCandMINOS_Results/results/)

(http://www.hep.ph.ic.ac.uk/~cp309/FCandMINOS_Results/results/)

Table 23: 68% intervals on A_{FB} in the six-plus-one q^2 bins from Feldman-Cousins and MINOS, when fitting for A_{FB} , F_L , S_3 and S_9 . For more details please see the description in the text.

q^2 range	FC	MINOS
$0.1 < q^2 < 2.0$	[0.28, 0.47]	[0.30, 0.45]
$2.0 < q^2 < 4.3$	[0.65, 0.84]	[0.65, 0.84]
$4.3 < q^2 < 8.68$	[0.50, 0.64]	[0.51, 0.63]
$10.09 < q^2 < 12.86$	[0.39, 0.56]	[0.41, 0.55]
$14.18 < q^2 < 16.$	[0.26, 0.41]	[0.27, 0.40]
$16. < q^2 < 19.$	[0.30, 0.46]	[0.30, 0.45]
$1.0 < q^2 < 6.0$	[0.58, 0.73]	[0.59, 0.73]

Table 24: 68% intervals on F_L in the six-plus-one $q²$ bins from Feldman-Cousins and MINOS, when fitting for A_{FB} , F_L , S_3 and S_9 . For more details please see the description in the text.

q^2 range	FC	MINOS
$0.1 < q^2 < 2.0$	$[-0.14, 0.06]$	$[-0.15, 0.07]$
$2.0 < q^2 < 4.3$	$[-0.10, 0.06]$	$[-0.11, 0.07]$
$4.3 < q^2 < 8.68$	[0.02, 0.15]	[0.01, 0.15]
$10.09 < q^2 < 12.86$	$[-0.23, -0.05]$	$[-0.23, -0.04]$
$14.18 < q^2 < 16.$	$[-0.07, 0.12]$	$[-0.07, 0.11]$
16. $< q^2 < 19$.	$[-0.31, -0.12]$	$[-0.30, -0.11]$
$1.0 < q^2 < 6.0$	$[-0.04, 0.10]$	$[-0.05, 0.11]$

Table 25: 68% intervals on S_3 in the six-plus-one q^2 bins from Feldman-Cousins and MINOS, when fitting for A_{FB} , F_L , S_3 and S_9 . For more details please see the description in the text.

q^2 range	FC	MINOS
$0.1 < q^2 < 2.0$	$[-0.04, 0.15]$	$[-0.05, 0.16]$
$2.0 < q^2 < 4.3$	$[-0.07, 0.08]$	$[-0.08, 0.10]$
$4.3 < q^2 < 8.68$	$[-0.05, 0.09]$	$[-0.06, 0.08]$
$10.09 < q^2 < 12.86$	$[-0.12, 0.09]$	$[-0.13, 0.10]$
$14.18 < q^2 < 16.$	$[-0.08, 0.09]$	$[-0.08, 0.10]$
$16. < q^2 < 19.$	$[-0.04, 0.17]$	$[-0.05, 0.17]$
$1.0 < q^2 < 6.0$	$[-0.01, 0.16]$	$[-0.01, 0.16]$

Table 26: 68% intervals on S_9 in the six-plus-one q^2 bins from Feldman-Cousins and MINOS, when fitting for A_{FB} , F_L , S_3 and S_9 . For more details please see the description in the text.

q^2 range	FC	MINOS
$0.1 < q^2 < 2.0$	[0.03, 0.21]	[0.02, 0.22]
$2.0 < q^2 < 4.3$	$[-0.02, 0.18]$	$[-0.04, 0.18]$
$4.3 < q^2 < 8.68$	$[-0.20, -0.06]$	$[-0.20, -0.06]$
$10.09 < q^2 < 12.86$	$[-0.11, 0.11]$	$[-0.12, 0.11]$
$14.18 < q^2 < 16.$	$[-0.14, 0.05]$	$[-0.14, 0.04]$
$16. < q^2 < 19.$	$[-0.10, 0.10]$	$[-0.10, 0.11]$
$1.0 < q^2 < 6.0$	$[-0.05, 0.11]$	$[-0.06, 0.11]$

Table 27: 68% intervals on A_9 in the six-plus-one q^2 bins from Feldman-Cousins and MINOS, when fitting for A_{FB} , F_L , S_3 and A_9 . For more details please see the description in the text.

q^2 range	FC	MINOS
$0.1 < q^2 < 2.0$	$[-0.29, 0.21]$	$[-0.22, 0.14]$
$2.0 < q^2 < 4.3$	$[-1.00, -0.87]$	$[-1.00, -0.80]$
$4.3 < q^2 < 8.68$	[0.36, 0.66]	[0.35, 0.66]
$10.09 < q^2 < 12.86$	[0.56, 0.86]	[0.56, 0.87]
$14.18 < q^2 < 16.$	[0.95, 1.00]	[0.93, 1.00]
$16. < q^2 < 19.$	[0.49, 0.79]	[0.49, 0.80]
$1.0 < q^2 < 6.0$	$[-0.88, -0.42]$	$[-0.91, -0.40]$

¹¹¹⁹ A comparison of the confidence and credible intervals on A^{Re}_T , F_L , A^2_T and 1120 $A_{\rm T}^{Im}$ is given in Tables. [28](#page-94-0) - [31.](#page-95-0)

Table 28: 68% intervals on $A_{\rm T}^{Re}$ in the six-plus-one q^2 bins from Feldman-Cousins and MINOS, when fitting for $A_{\rm T}^{Re}$, $F_{\rm L}$, $A_{\rm T}^{2}$ and $A_{\rm T}^{Im}$. For more details please see the description in the text.

q^2 range	FC	MINOS
$0.1 < q^2 < 2.0$	[0.27, 0.48]	[0.30, 0.45]
$2.0 < q^2 < 4.3$	[0.63, 0.84]	[0.65, 0.84]
$4.3 < q^2 < 8.68$	[0.50, 0.64]	[0.51, 0.63]
$10.09 < q^2 < 12.86$	[0.40, 0.56]	[0.41, 0.55]
$14.18 < q^2 < 16.$	[0.26, 0.41]	[0.27, 0.40]
16. $< q^2 < 19$.	[0.29, 0.46]	[0.30, 0.45]
$1.0 < q^2 < 6.0$	[0.58, 0.74]	[0.59, 0.73]

Table 29: 68% intervals on F_L in the six-plus-one $q²$ bins from Feldman-Cousins and MINOS, when fitting for A_T^{Re} , F_L , A_T^2 and A_T^{Im} . For more details please see the description in the text.

q^2 range	FC	MINOS
$0.1 < q^2 < 2.0$	$[-0.44, 0.20]$	$[-0.48, 0.21]$
$2.0 < q^2 < 4.3$	$[-0.75, 0.36]$	$[-0.88, 0.45]$
$4.3 < q^2 < 8.68$	[0.05, 0.66]	[0.03, 0.67]
$10.09 < q^2 < 12.86$	$[-0.87, -0.18]$	$[-0.87, -0.17]$
$14.18 < q^2 < 16.$	$[-0.21, 0.33]$	$[-0.21, 0.34]$
16. q^2 < 19.	$[-0.97, -0.36]$	$[-0.96, -0.37]$
$1.0 < q^2 < 6.0$	$[-0.24, 0.56]$	$[-0.31, 0.64]$

Table 30: 68% intervals on $A_T²$ in the six-plus-one $q²$ bins from Feldman-Cousins and MINOS, when fitting for A_T^{Re} , F_L , A_T^2 and A_T^{Im} . For more details please see the description in the text.

q^2 range	FC	MINOS
$0.1 < q^2 < 2.0$	$[-0.12, 0.47]$	$[-0.17, 0.51]$
$2.0 < q^2 < 4.3$	$[-0.50, 0.54]$	$[-0.59, 0.72]$
$4.3 < q^2 < 8.68$	$[-0.26, 0.36]$	$[-0.28, 0.39]$
$10.09 < q^2 < 12.86$	$[-0.47, 0.37]$	$[-0.51, 0.39]$
$14.18 < q^2 < 16.$	$[-0.25, 0.29]$	$[-0.26, 0.30]$
$16. < q^2 < 19.$	$[-0.14, 0.53]$	$[-0.16, 0.53]$
$1.0 < q^2 < 6.0$	$[-0.04, 0.83]$	$[-0.07, 0.87]$

Table 31: 68% intervals on $A_{\rm T}^{Im}$ in the six-plus-one q^2 bins from Feldman-Cousins and MINOS, when fitting for $A_{\rm T}^{Re}$, $F_{\rm L}$, $A_{\rm T}^{2}$ and $A_{\rm T}^{Im}$. For more details please see the description in the text.

1121 15.4 Feldman Cousins CL at the SM point

 As a measure of the consistency of the angular fit results and the SM predic- tion, the Feldman Cousins CL for the SM point was calculated. In contrast to the one dimensional FC confidence intervals, this CL is calculated varying all four angular observables simultaneously.

 One thousand toy datasets were generated at the SM-predicted central 1127 values of the angular observables $\{A_{FB}, F_L, S_3, S_9\}$ in each q^2 bin. The standard angular fit is performed on each toy dataset and the value of the 1129 likelihood, R_0 is recorded. Another angular fit is performed with the angular observables fixed to their SM-predicted values and the value of the likelihood ¹¹³¹ for this fit (R_1) is recorded. The likelihood ratio $R_{\text{toy}} = R_0/R_1$ is then calcu-lated. The same procedure is performed on fits to candidates from the data $_{1133}$ to obtain the likelihood ratio R_{data} . The p-value is then calculated by inte-1134 grating the distribution of 1000 R_{tov} values from R_{data} to infinity. The same ¹¹³⁵ procedure is repeated for the set of angular observables $\{A_{\rm T}^{Re},\ F_{\rm L},\ A_{\rm T}^{2},\ A_{\rm T}^{Im}\}.$ ¹¹³⁶ The resulting CLs are summarised in Tab. [32.](#page-96-0) No results are presented for the 10.09 $\langle q^2 \rangle$ = 12.86 bin as no SM prediction is available in this q^2 1137 ¹¹³⁸ region.

 Differences can arise between the two sets of CL-values for two reasons: small differences can arise due to limited number of pseudo-experiments that ¹¹⁴¹ are generated; larger differences can arise in the second q^2 bin due to the influence of the boundaries on the toy experiments.

Table 32: Angular analysis CLs at the SM point and p-value for the set of observables $\{A_{\text{FB}}, F_{\text{L}}, S_3, S_9\}$ and $\{A_{\text{T}}^{Re}, F_{\text{L}}, A_{\text{T}}^2, A_{\text{T}}^{Im}\}$ in each analysis q^2 bin.

$_{1143}$ 15.5 Extracting the p-value for the SM point

 The p-value of the SM point (including the background description) has also been estimated using an unbinned goodness of fit test (point-to-point dissimilarity test [\[1\]](#page-204-0)). The test is performed only considering the angular 1147 phase-space defined by $\cos \theta_l$, $\cos \theta_K$ and ϕ . A weighting function of the 1148 form $\Psi = e^{-x^2/2\sigma^2}$ is used, where σ is defined such that Ψ covers 5% of the angular phase-space. The results of this test are summarised in Table. [32.](#page-96-0) In all cases the results indicate that the fit model at the SM point is a reasonable 1151 description of the data. The test was repeated with Ψ covering 10% of the phase-space, with no change in the conclusion.

¹¹⁵³ Note, for the results in Table. [32](#page-96-0) there is also a reasonably large uncer-¹¹⁵⁴ tainty on what is meant by the SM point, coming from theoretical uncertain-¹¹⁵⁵ ties and differences between different theory predictions.

$_{\tiny\textsf{1156}}$ 16 Introducing a $K^+\pi^-$ system S-wave

¹¹⁵⁷ The inclusion of a spin-0 $K^+\pi^-$ component to the $K^+\pi^-$ system, that can 1158 interfere with the $K^{*0}(892)$, is motivated by the analysis of the angular and 1159 mass distribution of $B^0 \to K^{*0} J/\psi$ decays (see for example Ref. [\[21\]](#page-205-0)). The ¹¹⁶⁰ impact of the S-wave is evaluated and treated as systematic uncertainty on ¹¹⁶¹ the differential branching fraction and angular observables. The size of this ¹¹⁶² systematics is evaluated from the signal data. A 68% CL upper limit for the 1163 S-wave in the region $1 - 6$ GeV² is estimated. This value is conservatively ¹¹⁶⁴ used as a systematic uncertainty. More details can be found in the following ¹¹⁶⁵ sections.

¹¹⁶⁶ 16.1 Impact on the angular distributions: formalism

¹¹⁶⁷ When taking into account this new spin-0 component, the longitudinal am-¹¹⁶⁸ plitude is replaced in the angular expression by the sum of two terms: the 1169 usual one, $A_{0L/R}$ which corresponds to the longitudinal polarisation ampli-1170 tude of the K^{*0} (which has a Breit Wigner dependence as function of the ¹¹⁷¹ $K^+\pi^-$ mass) and a second amplitude, A_{0L}^0 , corresponding to the S-wave ¹¹⁷² contribution. This new amplitude at first approximation can be assumed to ¹¹⁷³ be constant over the $\pm 100 \,\text{MeV}/c^2$ interval around the K^{*0} mass used in this ¹¹⁷⁴ analysis.

¹¹⁷⁵ Explicitly, this corresponds to the transformation:

$$
A_{0,L/R}\cos\theta_K \rightarrow \frac{1}{\sqrt{3}}A^0_{0,L/R} + A_{0,L/R}\cos\theta_K
$$

 $_{1176}$ The immediate impact of the additional left- and right-handed S-wave am-¹¹⁷⁷ plitudes is to modify Γ such that^{[2](#page-97-0)}:

$$
\Gamma = |A_0^0|^2 + |A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2 = |A_0^0|^2 + \Gamma'
$$

¹¹⁷⁸ where A_0^0 is the amplitude for the S-wave component. This will modify the ¹¹⁷⁹ standard observables, leading to:

²The discussion of the S-wave is largely based on Ref. [\[24\]](#page-206-0)

$$
A_{\rm FB} = \frac{3}{4} \frac{Re(A_{\parallel L} A_{\perp L}^*) - Re(A_{\parallel R} A_{\perp R}^*)}{\Gamma'} \n= \frac{3}{4} \frac{Re(A_{\parallel L} A_{\perp L}^*) - Re(A_{\parallel R} A_{\perp R}^*)}{\Gamma(1 - F_S)} \nF_{\rm L} = \frac{|A_0|^2}{\Gamma'} = \frac{|A_0|^2}{\Gamma(1 - F_S)} \nA_{\rm Im} = \frac{Im(A_{\parallel L} A_{\perp L}^*) + Im(A_{\parallel R} A_{\perp R}^*)}{\Gamma'} \n= \frac{Im(A_{\parallel L} A_{\perp L}^*) + Im(A_{\parallel R} A_{\perp R}^*)}{\Gamma(1 - F_S)} \nS_3 = \frac{1}{2} \frac{|A_{\perp L}|^2 - |A_{\parallel L}|^2 + |A_{\perp R}|^2 - |A_{\parallel R}|^2}{\Gamma'} \n= \frac{1}{2} \frac{|A_{\perp L}|^2 - |A_{\parallel L}|^2 + |A_{\perp R}|^2 - |A_{\parallel R}|^2}{\Gamma(1 - F_S)}
$$

1180 where A_{FB} , A_{Im} , S_3 and F_L remain defined w.r.t. the K^{*0} and

$$
F_S = |A_0^0|^2 / \Gamma
$$

¹¹⁸¹ is the fractional contribution of the S-wave amplitude and is expected to be $_{1182}$ small. There is also a new forward-backward asymmetry, A_S that appears in ¹¹⁸³ the kaon angle. This comes from interference between the S-wave amplitude ¹¹⁸⁴ and the longitudinal K^{*0} amplitude,

$$
A_S = \frac{1}{\Gamma} \sqrt{3} \left[|A_{0,L}| |A_{0,L}^0| \cos \delta_L + |A_{0,R}| |A_{0,R}^0| \cos \delta_R \right] .
$$

Interference terms between $A_{0,L/R}^0$ and $A_{\perp,L/R}$ or $A_{\parallel,L/R}$ are removed by the $\hat{\phi}$ transformation. Accounting for the S-wave amplitude, the 'folded' angular distribution can be written:

$$
\frac{1}{\Gamma} \frac{d^4 \Gamma}{dq^2 d \cos \theta_K d \cos \theta_l d\hat{\phi}} = \frac{9}{16\pi} \left[\frac{2}{3} F_S (1 - \cos^2 \theta_l) + \frac{4}{3} A_S \cos \theta_K (1 - \cos^2 \theta_l) + 2(1 - F_S) F_L \cos^2 \theta_K (1 - \cos^2 \theta_l) + \frac{1}{2} (1 - F_S) (1 - F_L) (1 - \cos^2 \theta_K) (1 + \cos^2 \theta_l) + (1 - F_S) S_3 (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_l) \cos 2\hat{\phi} + \frac{4}{3} (1 - F_S) A_{FB} (1 - \cos^2 \theta_K) \cos \theta_l + (1 - F_S) A_{Im} (1 - \cos^2 \theta_K) (1 - \cos^2 \theta_l) \sin 2\hat{\phi} \right].
$$

The one dimensional projections of the angular distribution are given by :

$$
\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_l} = \frac{3}{4} \left[F_S + (1 - F_S)F_L \right] \left[1 - \cos^2\theta_\ell \right] +
$$

$$
\frac{3}{8} \left[(1 - F_S)(1 - F_L) \right] \left[1 + \cos^2\theta_\ell \right] + (1 - F_S)A_{FB}\cos\theta_\ell
$$

$$
\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_K} = \frac{F_S}{2} + A_S \cos\theta_K
$$

$$
\frac{3}{2} (1 - F_S) F_L \cos^2\theta_K + \frac{3}{4} [(1 - F_S)(1 - F_L)] [1 - \cos^2\theta_K].
$$

1185 16.2 Exploiting the phase change across the Breit-Wigner 1186 to estimate the S-wave

 $_{1187}$ The size of the interference term, A_S , depends on the relative strong phase ¹¹⁸⁸ difference between A_0 and A_0^0 and on F_S and F_L . Ignoring for the moment ¹¹⁸⁹ the left- and right-handedness of the amplitudes, the maximum possible size 1190 of A_S is bounded by the size of F_S and F_L :

$$
|A_S| \leq \sqrt{3}(F_S(1 - F_S)F_L)^{1/2} .
$$

 1191 For a non-relativistic Breit-Wigner distribution, A_0 can be split into real ¹¹⁹² and imaginary parts:

$$
Re(A_0(m_{K^+\pi^-})) = \frac{a}{1+a^2} \text{ and } Im(A_0(m_{K^+\pi^-})) = \frac{i}{1+a^2}
$$

¹¹⁹³ where

$$
a = \frac{m_{K^+\pi^-} - m_{K^{*0}}}{\Gamma/2}
$$

,

¹¹⁹⁴ and $m_{K^{*0}}$ is the pole mass of the K^{*0} Breit-Wigner. In terms of $Re(A_0^0)$, 1195 $Im(A_0^0), Re(A_0)$ and $Im(A_0^0), A_S$ becomes:

$$
A_S(a) \propto Re(A_0^0)Re(A_0) + Im(A_0^0)Im(A_0)
$$

1196 There is also a phase change of A_0 between the left- and right-hand side of ¹¹⁹⁷ the Breit-Wigner. If $Re(A_0^0)$ and $Im(A_0^0)$ are assumed to be constant across the $\pm 100 \,\text{MeV}/c^2$ mass window used in the analysis, then the phase change 1199 of the Breit-Wigner, of A_0 , can be exploited to measure the size of F_s from 1200 the asymmetry in $\cos \theta_K$ for events above and below the K^{*0} pole mass.

¹²⁰¹ If the average values of A_S in the 100 MeV/ $c²$ window above and below 1202 the pole mass are A_+ and A_- , then $A_+ \pm A_-$ can be used to isolate $Re(A_0)$ ¹²⁰³ and $Im(A_0)$ parts of the Breit-Wigner. Further it can be shown that:

$$
\langle F_{\rm S} \rangle = \frac{\left[(A_+ + A_-)^2 / 4 + (A_+ - A_-)^2 / (4 \times 1.23) \right] \times 3.24 / (3F_{\rm L})}{1 - \left[(A_+ + A_-)^2 / 4 + (A_+ - A_-)^2 / (4 \times 1.23) \right] \times 3.24 / (3F_{\rm L})} \tag{4}
$$

1204 where the numerical term are obtained, after integration, for $\frac{\Gamma}{2} = 26 \text{ MeV}/c^2$. 1205 The measurement of F_S that comes from $A₊$ and $A₋$ is statistically more 1206 precise than simply fitting directly for F_S and A_S as independent variables ¹²⁰⁷ because the measurement is based on a sizable interference term, rather than 1208 a measurement of a small extra amplitude – in simpler terms A_S can be more 1209 precisely determined that F_S .

1210 The procedure has been validated with a large statistics sample of $B^0 \rightarrow$ ¹²¹¹ $K^{*0}J/\psi$ events comparing the calculated $\langle F_S \rangle$ to the fitted F_S , as shown ¹²¹² in Section [F.](#page-175-0)

1213 Given the good results obtained for the $B^0 \to J/\psi K^{*0}$ decay, the pro-¹²¹⁴ cedure can been applied to $B^0 \to K^{*0} \mu^+ \mu^-$. This has been done for two ¹²¹⁵ different q^2 ranges: 1-19 GeV²/ c^4 and also 1-6 GeV²/ c^4 . Unfortunately, in ¹²¹⁶ the latter case the statistics is too low for the fit (with the S-wave parameters) ¹²¹⁷ to converge successfully. To reduce the number of parameters we integrate 1218 over the ϕ angle. This does not change the sensitivity to the S-wave parame-1219 ters (the sensitivity to which comes mainly through $\cos \theta_K$) and removes two ¹²²⁰ angular observables, simplifying the fit.

¹²²¹ The result of the fit in the q^2 region from 1 to 19 GeV²/ c^4 and 1 to 6 GeV^2/c^4 , excluding the J/ψ and $\psi(2S)$, is given on Table [33](#page-101-0) and Figures 1223 [79,](#page-179-0)[80,](#page-180-0) [81,](#page-181-0) [82.](#page-182-0) The values of F_S have been computed assuming Gaussian

distributed errors on F_L and A_S^{\pm} μ_{1224} distributed errors on F_L and A_S^{\pm} . The same results are obtained by doing a ¹²²⁵ profile likelihood scan.

¹²²⁶ If the S-wave contribution is fixed to 0, the F_L value is 0.52 ± 0.03 and ¹²²⁷ 0.68 \pm 0.06 for the 1 to 19 GeV²/ c^4 and 1 to 6 GeV²/ c^4 regions respectively. ¹²²⁸ Consistent with the nominal fit results.

In the high K^{*0} energy approximation F_S is expected to have the same q^2 1229 1230 dependence as $F_{\rm L}$ (driven by the q^2 dependence of the transverse amplitudes). This implies that taking the 68% CL upper limit in the region $1-6 \text{ GeV}^2/c^4$ 1231 1232 as a systematic is a conservative estimate for every bin, since F_L is largest in ¹²³³ this region.

		$1 < q^2 < 19 \,\text{GeV}^2/c^4$	$1 < q^2 < 6 \,\text{GeV}^2/c^4$
Fitted parameters	A^{Re}_T	0.619 ± 0.088	-0.490 ± 0.293
	F_L	0.523 ± 0.031	0.700 ± 0.066
	A_{S}^{+}	-0.025 ± 0.051	0.003 ± 0.109
	$A_{\rm S}^-$	-0.162 ± 0.058	-0.228 ± 0.119
Using $eq 4$	$\langle F_{\rm S} \rangle$	0.025 ± 0.018	0.038 ± 0.043
		$(< 0.04$ at 68\% CL)	(< 0.07 at 68% CL)

Table 33: Fit results for F_S and A_S^{\pm} $\frac{1}{S}$ in the q^2 region from 1 to 19 GeV²/ c^4 and 1 to 6 GeV²/ $c⁴$ when including the S-wave.

¹²³⁴ 17 Correction for the threshold terms

¹²³⁵ In the angular fit we neglect lepton masses. This assumption holds every-1236 where apart the first q^2 bin. When muon masses are not neglected, terms 1237 with additional q^2 -dependence appear. The effect of neglicting these terms ¹²³⁸ is corrected for a posteriori as discussed in the next sections. This correction 1239 roughly corresponds to a 10-20% factor for all observables, apart for F_L for ¹²⁴⁰ which this effect is negligible.

¹²⁴¹ 17.1 Procedure to correct for the threshold terms

¹²⁴² Since we do not have yet enough data to perform a complete parametrisa-¹²⁴³ tion as a function of the dimuon invariant mass squared, the only way the 1244 dependence on q^2 is taken into account in the analysis is by performing the ¹²⁴⁵ fit separately in wide bins of q^2 . In each of these bins, the resulting "physics" 1246 parameters represent an average over that q^2 bin.

 $\frac{1}{247}$ If we revisit the full PDF for the angular distribution then a q^2 -dependence ¹²⁴⁸ arises from three separate places:

¹²⁴⁹ 1. the q^2 dependence of the form factors;

¹²⁵⁰ 2. an explicit dependence on q^2 that accompanies \mathcal{C}_7 and \mathcal{C}_7' ;

¹²⁵¹ 3. threshold terms that depend on $x = 4m_{\mu}^2/q^2$ in the angular distribution.

 Ω_{252} One and two can be associated with the q^2 dependence of the amplitudes, ¹²⁵³ or equally of the observables. The third type of q^2 dependence has until now been completely neglected. These threshold terms are negligible at high q^2 1254 ¹²⁵⁵ where $q^2 \gg m_\mu^2$ and $x \to 0$, but may become significant as $q^2 \to 0$, in par-¹²⁵⁶ ticular in the $0 < q^2 < 2 \text{ GeV}^2/c^4$ bin. If we revisit the angular distribution, 1257 the impact of the threshold terms is to modify I_1 through I_9 as:

$$
I_1^s = \frac{3}{4} \left[1 - \frac{x}{3} \right] (|A_{\parallel}|^2 + |A_{\perp}|^2) + \frac{x}{2} (|A_{\parallel}|^2 + |A_{\perp}|^2)
$$

\n
$$
I_1^c = [1 + x] |A_0|^2
$$

\n
$$
I_2^s = \frac{1}{4} [1 - x] (|A_{\parallel}|^2 + |A_{\perp}|^2)
$$

\n
$$
I_2^c = -[1 - x] |A_0|^2
$$

\n
$$
I_3 = \frac{1}{2} [1 - x] (|A_{\perp}|^2 - |A_{\parallel}|^2)
$$

\n
$$
I_6 = 2 [\sqrt{1 - x}] Re(A_{\parallel L} A_{\perp L}^* - A_{\parallel R} A_{\perp R}^*)
$$

\n
$$
I_9 = [1 - x] Im(A_{\parallel L} A_{\perp L}^* + A_{\parallel R} A_{\perp R}^*)
$$
\n(5)

 $\Delta s \times A s \rightarrow 1$, the angular distribution actually becomes isotropic in $\cos \theta_{\ell}$, ¹²⁵⁹ cos θ_K and ϕ and we lose all sensitivity to the observables.

1260 These new terms create a problem for the q^2 averaging (see Sec. [8.7\)](#page-45-0). ¹²⁶¹ Unfortunately, as a result of neglecting the threshold terms, in the fit to ¹²⁶² the data in the $0 < q^2 < 2 \text{ GeV}^2/c^4$ bin, the measured values of the physics ¹²⁶³ parameters will be a biased estimate of the pure physics quantities predicted ¹²⁶⁴ by theory. A procedure to estimate this bias is described below.

¹²⁶⁵ 17.2 Correction procedure

1266 Integrating the full angular expression over $\cos \theta_l$, $\cos \theta_K$ and ϕ , yields:

$$
\Gamma = \left[1 + \frac{x}{2}\right] \left(|A_{\parallel}|^2 + |A_{\perp}|^2 + |A_0|^2\right) \ .
$$

¹²⁶⁷ The individual terms in the angular distribution can also be updated to 1268 include a dependence on x , e.g.

$$
\frac{I_3}{\Gamma} = \frac{\frac{1}{2}(1-x)((|A_{\perp}|^2 - |A_{\parallel}|^2)}{(1+\frac{x}{2})(|A_{\parallel}|^2 + |A_{\perp}|^2 + |A_0|^2)} = \frac{(1-x)}{(1+\frac{x}{2})} \frac{1}{2} A_T^2 (1-F_{\text{L}}) = \beta(q^2) A_T^2 (q^2) (1-F_{\text{L}}(q^2)).
$$

When averaging over the $0 < q^2 < 2 \text{ GeV}^2/c^4$ bin, there are now three q^2 1269 ¹²⁷⁰ dependent terms to worry about. As a reminder, in the simpler case when ¹²⁷¹ ignoring the threshold terms there are two q^2 dependent terms F_L and A_T^2 . ¹²⁷² In this case the fit is sensitive to a rate average of $A_T^2(q^2)$, where you sum ¹²⁷³ over narrow q^2 bins, q_i^2 , weighting A_T^2 by $N(q_i^2)(1 - F_L(q_i^2))$. Now that 1274 there are three q^2 dependent terms some assumption needs to be made on ¹²⁷⁵ the q^2 dependence of the observables in order to unfold the effect of the ¹²⁷⁶ x−dependence from the measured observables.

The only physics parameter that is not biased by the threshold effect is F_L . F_L is essentially determined by the $cos(\theta_K)$ distribution which take the form:

$$
\frac{4}{3}(1+\frac{x}{2})[2(F_L)\cos^2(\theta_K)+(1-F_L)\sin^2(\theta_K)]\tag{6}
$$

 This expression is obtained from the full angular distribution neglecting the ϕ depending terms and integrating over $\cos(\theta_\ell)$. While Eq. [6](#page-103-0) depends on x, it does not not change the shape of the distribution, only the amplitude. So, 1280 the threshold term has no impact on F_L .

¹²⁸¹ To correct the other physics parameters for the threshold effects and ¹²⁸² obtain the true average, one needs to model the q^2 dependence of the physics ¹²⁸³ parameters in the bin. A first approximation is to take A_T^2 and A_T^{Im} as ¹²⁸⁴ constant and A_T^{Re} as rising linearly, since it must be 0 at $q^2 = 0$.

To do the weighting, one also needs to model the q^2 variation of the transverse width. This can be achieved by using the experimental distribution of the events as function of q^2 weighted by the term $(1 - F_L)$, modeling a plausible variation of $(1 - F_L)$ as function of q^2 , as for example:

$$
F_L(q_i^2) = \frac{aq_i^2}{1 + aq_i^2}
$$
\n(7)

 This parameterisation of F_L is "physics" inspired. F_L changes rapidly in ¹²⁸⁶ q^2 at low q^2 but must become zero as $q^2 \to 0$ (the photon is transversely polarised). It is also expected (in all models) to rise smoothly across the $0 < q^2 < 2 \,\text{GeV}^2/c^4$ bin.

¹²⁸⁹ 17.2.1 Correction factors

¹²⁹⁰ To first approximation, by neglecting the threshold terms we have underes-¹²⁹¹ timated the size of the angular observables in the $0 < q^2 < 2 \text{ GeV}^2/c^4$ bin. ¹²⁹² The multiplicative correction factors needed to correct our measurement take ¹²⁹³ the form of Eq. [8](#page-104-0) for A_T^2 and A_T^{Im} and Eq. [9](#page-104-1) for A_T^{Re} . They can be directly 1294 evaluated on data assuming a shape for F_L as in equation [7.](#page-104-2)

¹²⁹⁵ For a pure signal sample,

$$
Corr(A_T^2) = Corr(A_T^{Im}) = \frac{\sum_{i=1}^N (1 - F_L(q_i^2))}{\sum_{i=1}^N (\frac{1 - x_i}{1 + \frac{x_i}{2}})(1 - F_L(q_i^2))}
$$
(8)

$$
Corr(A_T^{Re}) = \frac{\sum_{i=1}^N (1 - F_L(q_i^2))}{\sum_{i=1}^N (\frac{\sqrt{1 - x_i}}{1 + \frac{x_i}{2}})(1 - F_L(q_i^2))} \quad . \tag{9}
$$

The result of the fit neglecting the threshold terms in the bin $0 < q²$ $2 \text{ GeV}^2/c^4$ has to be multiplied by these corrections to take into account the impact of the mass of the muon, as follows (similar relations hold for A_T^{Im} and A_T^{Re}):

$$
A_T^2(0.1-2) = A_T^2(0.1-2)_{from fit} \times Corr(A_T^2)
$$
 (10)

For the errors we multiply by the corrections on the errors (similar relations hold for A_T^{Im} and A_T^{Re} :

$$
err(A_T^2(0.1-2)) = err(A_T^2(0.1-2))_{from fit} \times Corr(err(A_T^2))
$$
 (11)

It can be demonstrated that the corrections for S_3 , A_{FB} and A_{Im} are the same as those for A_T^2 , A_T^{Re} and A_T^{Im} respectively, since, according to section [8.7,](#page-45-0) the following relations hold:

$$
\langle A_{Im} \rangle = \frac{1}{2} \langle A_{T}^{\tilde{I}m} \rangle (1 - \langle F_{L} \rangle) \tag{12}
$$

$$
\langle S_3 \rangle = \frac{1}{2} \langle A_T^{(2)} \rangle (1 - \langle F_L \rangle) \tag{13}
$$

$$
\langle A_{FB} \rangle = \frac{3}{4} \langle \tilde{A}_T^{Re} \rangle (1 - \langle F_L \rangle) \tag{14}
$$

¹²⁹⁶ This correction procedure has been validated using the MC, as discussed ¹²⁹⁷ in Appendix [E.](#page-164-0)

¹²⁹⁸ 17.3 Results of the evaluation of the corrections on $_{1299}$ data.

To evaluate the values of the corrections on data where we do not have a pure sample of signal events, Eq. [8](#page-104-0) and [9](#page-104-1) need to be modified introducing W_i as follows:

$$
Corr(A_T^2) = Corr(A_T^{Im}) = \frac{\sum_{i=1}^N (1 - F_L(q_i^2))W_i}{\sum_{i=1}^N (\frac{1-x}{1 + \frac{x_i}{2}})(1 - F_L(q_i^2))W_i}
$$
(15)

$$
Corr(A_T^{Re}) = \frac{\sum_{i=1}^N (1 - F_L(q_i^2)) W_i}{\sum_{i=1}^N (\frac{\sqrt{1-x}}{1 + \frac{x_i}{2}})(1 - F_L(q_i^2)) W_i}
$$
(16)

¹³⁰⁰ where W_i is a weight for the event i, which is the product of the weight taking ¹³⁰¹ into account the acceptance effects and a $sPlot$ weight that comes from a fit ¹³⁰² to the $K^+\pi^-\mu^+\mu^-$ invariant mass distribution and is used to subtract the ¹³⁰³ background.

¹³⁰⁴ The results are shown on table [34](#page-106-0) for three possible values of the pa-¹³⁰⁵ rameter a (in Eq. [7\)](#page-104-2). The linear approximation of A_{FB} and A_T^{Re} is used to ¹³⁰⁶ estimate the size of the correction for these observables.

To determine the parameter a on data, the mean value of F_L has been calculated using the following expression:

$$
\langle F_L \rangle = \frac{\sum_{i=1}^{N} F_L(q_i^2) W_i}{\sum_{i=1}^{N} W_i} = \frac{\sum_{i=1}^{N} \left(\frac{aq_i^2}{1 + aq_i^2}\right) W_i}{\sum_{i=1}^{N} W_i} \tag{17}
$$

¹³⁰⁷ scanning the values of a between 0.2 and 1.3. The resulting curve is shown ¹³⁰⁸ on Fig. [40,](#page-106-1) and the intersection with the measured value of $F_L = 0.36 \pm 0.10$ 1309 gives the measured value of a of $a = 0.67^{+0.54}_{-0.30}$.

	$a = 0.37$ $a = 67$		$ a=1.21 $
Correction on A_T^2 , S_3 , A_T^{Im} , A_{Im}	1.18	1.20	1.22
Correction on $err(A_T^2)$, $err(S_3)$,			
$err(A_{T}^{Im})$, $err(A_{Im})$	1.16	1.18	1.20
Correction on A_T^{Re} , A_{FB}	1.12	1.13	1.14
Correction on A_T^{Re} , A_{FB} (linear approx)	1.06	1.06	1.07
Correction on $err(A_T^{Re})$, $err(A_{FB})$	1 11	1.12	1.14

Table 34: Values of the corrections evaluated with formulae [15](#page-105-0) and [16](#page-105-1) using 254 candidates in the range (0.1-2) GeV^2/c^4 , assuming a behaviour for F_L as in Eq. [7.](#page-104-2) Three different values of the parameter a of $F_L(q²)$, defined in Eq. [7,](#page-104-2) have been considered.

Figure 40: The curve represent the values of $\langle F_L \rangle$ as function of a as calculated on data using Eq. [17](#page-105-2) . The horizontal lines represent the measured value of F_L and its error. The intersection with the curve gives the measurement of $a = 0.67^{+0.54}_{-0.30}$.

¹³¹⁰ As a cross-check we also computed the correction assuming a linear be-¹³¹¹ haviour for F_L as function of q^2 (see [E.2\)](#page-173-0), obtaining similar results.

¹³¹² 18 Systematic uncertainties on and cross checks 1313 of the angular observables

¹³¹⁴ Sources of systematic uncertainty are considered if they introduce an an-¹³¹⁵ gular or q^2 -dependent bias in the acceptance correction or can significantly ¹³¹⁶ change the estimated $B^0 \to K^{*0} \mu^+ \mu^-$ signal yield. This includes data-MC ¹³¹⁷ corrections that vary with the momentum or p_T of the kaon, pion or muons. ¹³¹⁸ Common sources of systematic uncertainty for all of the analyses pre-¹³¹⁹ sented in this note are:

¹³²⁰ • the statistical uncertainty on the acceptance correction coming from ¹³²¹ limited MC statistics;

- ¹³²² the uncertainty on the acceptance coming from the factorisation as-¹³²³ sumptions;
- ¹³²⁴ the uncertainty on the acceptance coming from data-MC corrections;
- ₁₃₂₅ the uncertainty on the acceptance correction coming from differences</sub> ¹³²⁶ in trigger efficiency between data and MC;
- ¹³²⁷ the uncertainty on the line-shape of the K^+ π[−] $\mu^+\mu^-$ invariant mass.

¹³²⁸ For the differential branching fraction analysis, the contributions from:

$$
B_s^0 \to \phi \mu^+ \mu^- \text{ with } K \to \pi \text{ mis-id};
$$

$$
B^0_s \to \overline{K}^{*0} \mu^+ \mu^-.
$$

¹³³¹ are explored. For the angular analysis and zero-crossing point extraction the ¹³³² impact of:

1333 \bullet $B^0 \leftrightarrow \overline{B}{}^0$ mis-id.

¹³³⁴ is considered. The letter in the subsection headings is a key that can be used ¹³³⁵ when refering to the tables that appear later in this section and in Sec. [7.5.](#page-33-0)

¹³³⁶ 18.1 Statistical uncertainty on the acceptance correc- $_{1337}$ tion $|A|$

¹³³⁸ The statistical uncertainty on the factorised acceptance correction is small for 1339 most of the q^2 range. At high- q^2 it can become more significant due to limited ¹³⁴⁰ MC statistics. In the $16 < q^2 < 19 \,\text{GeV}^2/c^4$ bin, where the uncertainty is $_{1341}$ largest, the statistical uncertainty on the acceptance corrections is 1-2%.
$_{1342}$ 18.2 Acceptance correction binning \vert B

1343 One potential source of systematic bias is in the choice of q^2 binning for the ¹³⁴⁴ acceptance correction - particularly in regions where the efficiency changes 1345 rapidly in q^2 . To estimate the maximum possible size of this effect, the fit ¹³⁴⁶ is repeated using the acceptance correction in ϕ , $\cos \theta_l$ and $\cos \theta_K$ for the 1347 neighbouring q^2 bins.

¹³⁴⁸ 18.3 Systematic biases on the acceptance correction \lim_{1349} and the break down of factorisation [C]

 To account for possible systematic biases in the acceptance correction, that are not accounted for else-where, an additional systematic uncertainty of 10% is applied to the acceptance correction. This is used as a "catch-all" for any effect in the acceptance correction that has not been fully understood in the studies in this note. To maximise any potential bias coming from this change in the acceptance correction this 10% variation is applied in a coherent way, ¹³⁵⁶ e.g.

$$
w_i \to w_i (1 \pm 0.1 \times |\cos \theta_{l;i}|)
$$

¹³⁵⁷ or

$$
w_i \to w_i (1 \pm 0.1 \times |\cos \theta_{K;i}|)
$$

1358 Variations are also tried in which $\cos \theta_l$ and $\cos \theta_K$ efficiencies are varied ¹³⁵⁹ simultaneously. A non-factorisable variation of efficiency where:

$$
w_i \to w_i (1 \pm 0.1 \times \sin(\pi \cdot \cos \theta_{l,i}) \sin(\pi \cdot \cos \theta_{K,i})
$$

¹³⁶⁰ is also considered.

1361 No additional variation is applied to the ϕ angle as the ϕ -acceptance ¹³⁶² is thought to be a predominantly geometrical effect and is less effected by ¹³⁶³ traditional data-MC differences.

¹³⁶⁴ These 10% variations are conservative and could be relaxed if better agree-¹³⁶⁵ ment were to be achieved for $B^0 \to K^{*0} J/\psi$ decay or larger MC statistics were ¹³⁶⁶ available.

$_{1367}$ 18.4 Trigger efficiency $[D]$

¹³⁶⁸ The trigger efficiency in data can estimated using the Tis-Tos technique ¹³⁶⁹ on $B^0 \to K^{*0}J\!/\psi$ and compared to MC11a MC that has been selection with

 Stripping 17 and Triggered with TCK 0x40760037. Fig. [41](#page-110-0) shows the vari- ation of the trigger efficiency in data and MC as a function of the kinematic properties of the muon system. For the L0Muon trigger the efficiency is com-¹³⁷³ pared as a function of the average p_T of the μ^+ and μ^- . Whilst there is a clear systematic difference seen in the efficiency, it appears to be indepen-¹³⁷⁵ dent of the muon p_T to $\mathcal{O}(1\%)$. A similar behaviour is exhibited by Hlt 1 and Hlt 2. At L0 and Hlt,1, the muon kinematics are the dominant contribution in determining the trigger efficiency.

1378 A similar study was completed in Ref. [\[14\]](#page-205-0) for $B^0 \to K^{*0} J/\psi$ in MC10. In keeping with the previous analysis the effect of trigger is estimated by ¹³⁸⁰ varying the efficiency of soft muons ($p \leq 10 \,\text{GeV}/c$) by 3\% in the acceptance correction. Remaining differences will be caught by the vairation of the acceptance correction described above.

Figure 41: Trigger efficiency for $B^0 \to K^{*0} J/\psi$ candidates in data (solid marker) and truth-matched $B^0 \to K^{*0} J/\psi$ candidates in MC11a estimated using the Tis-Tos technique.

¹³⁸³ 18.5 Data-MC corrections

1384 18.5.1 IsMuon efficiency [E]

¹³⁸⁵ An estimate for the systematic associated with the IsMuon performance is ¹³⁸⁶ made by fluctuating the efficiency of the two muons in the MC within the un-¹³⁸⁷ certainty on data-MC correction. For a conservative estimate, the efficiency $_{1388}$ of tracks with momentum $\leq 10 \,\text{GeV}/c$ is fluctuated downwards (upwards) 1389 and with momentum $> 10 \,\text{GeV}/c$ upwards (downwards) within their uncer- $_{1390}$ tainty. The uncertainty is typically $2-10\%$ and varies with momentum and η . The regions with the largest uncertainty are also the least polpulated by ¹³⁹² signal candidates in the data.

1393 18.5.2 Tracking efficiency $\boxed{\mathrm{F}}$

¹³⁹⁴ An estimate for the systematic associated with the tracking performance is ¹³⁹⁵ estimated by fluctuating the efficiency for each of the four tracks in MC ¹³⁹⁶ within the uncertainty on data-MC correction. For a conservative estimate, ¹³⁹⁷ the efficiency of tracks with momentum $\leq 10 \,\text{GeV}/c$ is fluctuated downwards $_{1398}$ (upwards) and with momentum $> 10 \,\text{GeV}/c$ upwards (downwards) within 1399 their uncertainty. The uncertainty is typically $2 - 10\%$ and varies with mo-1400 mentum and η . Again, the regions with the largest uncertainty are also the ¹⁴⁰¹ least polpulated.

$_{1402}$ 18.5.3 PID performance [G]

 T_{1403} The PID distributions used for the MC are sampled from a D^{*+} calibration 1404 sample in bins of (p, η) and occupancy. There are two possible sources of ¹⁴⁰⁵ uncertainty associated with this calibration sample: a statistical uncertainty ¹⁴⁰⁶ associated with the number of K^{\pm}/π^{\pm} candidates in each of the bins and a ¹⁴⁰⁷ systematic uncertainty associated with the choice of binning.

1408 A systematic uncertainty on the $\text{DLL}_{K\pi}$ and $\text{DLL}_{\mu\pi}$ corrections is esti- mated on the binning scheme, by assigning 50% of events within 10% of the bin width to the lower (higher) bin edge a DLL from the lower (higher) bin of the calibration sample.

$_{1412}$ 18.5.4 IP smearing H

¹⁴¹³ A conservative estimate of the systematic uncertainty on the IP smearing is ¹⁴¹⁴ made by producing an acceptance correction without IP smearing.

Figure 42: The $K^+\pi^-\mu^+\mu^-$ invariant mass distribution of MC $B^0 \to$ $K^{*0}\mu^+\mu^-$ candidates at high- and low- q^2 (a) and the q^2 dependence of the Gaussian width of the double Crystal Ball shapes used to model the invariant mass distribution (b).

¹⁴¹⁵ 18.5.5 BDT input variable re-weighting [I]

¹⁴¹⁶ The variable B^0 p_T is re-weighted when applying the BDT to the sample of ¹⁴¹⁷ generated events used to defined the acceptance correction. The re-weighting ¹⁴¹⁸ of this variable was removed and a new acceptance correction produced. The ¹⁴¹⁹ same procedure was also performed for the variable B^0 p.

$_{1420}$ 18.6 Signal mass model [J]

1421 In the fits to the $K^+\pi^-\mu^+\mu^-$ invariant mass, the signal line-shape is assumed ¹⁴²² to be the same for the signal and control channel and to be independent of ¹⁴²³ q^2 . This has been cross checked for simulated $B^0 \to K^{*0} \mu^+ \mu^-$ events in the $_{1424}$ q^2 bins used in this analysis. The Gaussian width of the double Crystal Ball ¹⁴²⁵ shapes used to model the invariant mass distribution of these fits can be seen ¹⁴²⁶ in Figure. [42](#page-112-0) (b). A straight-line fit to this data yields a gradient of about 1427 5%. This 5% is assigned as a systematic uncertainty by varying the width of ¹⁴²⁸ the signal dsitribution by $\pm 5\%$ in the likelihood fits.

$_{1429}$ 18.7 Background angular model $\vert K \vert$

In the angular fit, the background shape in each angle is modelled by a 2nd 1430 ¹⁴³¹ order polynomial. The systematic uncertainty associated with this choice ¹⁴³² of parameterisation is estimated by fitting using $0th$, $1st$ and $3rd$ order poly-¹⁴³³ nomials. Zeroth- and first-order background models are not expected to accurately describe background shape. Consider that a zeroth order polyno- mial is unable to model an asymmetric distribution of background events in ¹⁴³⁶ cos θ_l . This will result in the mis-measurement of A_{FB} ($A_{\rm T}^{Re}$). Similarly, a first order polynomial is unable to model any higher-order variations in the ϕ distribution of background events, to which the measurement of S_3 , S_9 and ¹⁴³⁹ A_9 $(A_{\rm T}^2, A_{\rm T}^{Im})$ are sensitive. The results of this study are in Appendix. [H.](#page-191-0)

 The sensitivity of the fit results to statistical fluctuations in the back- ground is examined using pseudo-experiments. Problems could arise due to the small number of background candidates and the event weighting proce- dure. This could lead to events in an unlikely region of phase-space obtaining large weights and dramatically changing the background shape. To explore these effects, 10000 toy datasets are generated with the background flat in ¹⁴⁴⁶ the angles (a $0th$ order polynomial). These datasets are fitted with 1st and 3rd order polynomials, and compared to "nominal" fits performed using 2nd 1447 order polynomials. The results of this study are summarised in Tables. [36-](#page-119-0)[40](#page-123-0) and Tables. [41](#page-124-0)[-44.](#page-127-0) These biases are small.

1450 18.8 $K^{*0} \leftrightarrow \overline{K}^{*0}$ mis-id [L]

¹⁴⁵¹ The systematic bias coming from $K^{*0} \leftrightarrow \overline{K}^{*0}$ is negligible (below the 1% ¹⁴⁵² level) and will only impact $A_{\rm T}^{Re}$ and $A_{\rm T}^{Im}$ ($A_{\rm FB}$, S_9 and A_9).

¹⁴⁵³ 18.9 Peaking backgrounds [M]

¹⁴⁵⁴ The uncertainty on the peaking backgrounds from $B_s^0 \to \phi \mu^+ \mu^-$ ($\pm 0.5\%$) ¹⁴⁵⁵ and $B_s^0 \to K^{*0} \mu^+ \mu^-$ are considered for the differential branching fraction. ¹⁴⁵⁶ $B_s^0 \to K^{*0} \mu^+ \mu^-$ has not yet been seen. For the analysis it is assumed that ¹⁴⁵⁷ the ratio of this decay mode to $B^0 \to K^{*0} \mu^+ \mu^-$ is a simple ratio of the CKM ¹⁴⁵⁸ elements and f_s/f_d , i.e. it is approximately 1%. An uncertainty of $\pm 1\%$ is ¹⁴⁵⁹ assumed on this number.

 Peaking backgrounds are not accounted for directly in the angular fits. It is difficult to satisfactorily account for this contribution due to the un-¹⁴⁶² known angular distribution of $B_s^0 \to \phi \mu^+ \mu^-$ and $B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-$. Instead a conservative estimate is assumed in which these backgrounds have the same shape as the signal angular distributions, and maximal or minimal values of ¹⁴⁶⁵ the physics parameters (e.g. $A_{FB} = \pm 1$ and $F_L = 0, 1$). This leads to a sys-¹⁴⁶⁶ tematic uncertainty at the level of 2% for $B_s^0 \to \phi \mu^+ \mu^-$ and $B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-$. These variations are not included in the tables below.

 $_{1468}$ 18.10 Multiple candidates $[N]$

 The fits for the angular observables have been repeated removing all events that contain multiple candidates (1%). This has a negligible impact on the final result (this variation is not shown in tables below).

$_{1472}$ 18.11 Removal of soft-tracks $[O]$

 The fits to the angular observables have also been repeated by removing events with tracks with momenta less than $5 \text{ GeV}/c$ (and recomputing the acceptance correction). This variation is prompted by Fig. [57](#page-148-0) in Appendix [A.](#page-146-0) ¹⁴⁷⁶ The number of $B^0 \to K^{*0} \mu^+ \mu^-$ candidates removed by this requirement is ¹⁴⁷⁷ small in the data. These candidates tend to sit at the extremes of $\cos \theta_K$ and typically have large weights. The effect of removing these candidates is indicated in Tables. [41-](#page-124-0)[44.](#page-127-0)

$_{1480}$ 18.12 Uncertainty on the S-wave component $[P]$

 The fits are performed assuming the absence of an S-wave component. The systematic uncertainty introduced by this assumption was estimated by in- corporating an s-wave into the pdf with the properties extracted in Sec. [16.](#page-97-0) 1484 This corresponds to the parameters $A_S = -0.11$ and $F_S = 0.07$.

¹⁴⁸⁵ 18.13 Estimation of the systematic uncertainty on the **angular observables**

 Systematic uncertainties on the angular observables have been estimated in two ways:

 1. In an ad-hoc way, by systematically varying the acceptance correction and repeating the fit to the data with weights from this new acceptance correction;

2. Using toy pseudo-experiments.

 Results from the first approach are included in Appendix. [H.](#page-191-0) The second approach is described below.

 In the toy approach, the typical size of the systematic bias is estimated by generating toys with the nominal acceptance effect and the signal and background parameters fixed to their best fit values to the data. In the FC toys, each candidate is the weighted by the same acceptance function that is used to accept-reject events. Here, the toys are instead weighted according to the acceptance effect after the systematic effect of interest has been varied; i.e. the acceptance used to weight the toys is not the same as the one that has been used to accept-reject them.

 Ten thousand toy datasets were generated for each systematic variation described above, with the measured central values in Tables [21](#page-75-0) and [22.](#page-75-1) The standard angular fit was then performed on each generated dataset to ob- tain the distribution of fitted values for each angular observable and each systematic variation.

 The size of the systematic uncertainty on each physics parameter is cal- culated as the difference between the value of the physic parameter used to generate the toys and the mean value of the parameter from the angular fits to the toys. The standard error on the mean is used as a measure of the statistical uncertainty arising from the limited number of generated datasets, ¹⁵¹³ for each observable in each q^2 bin.

 This procedure is not used to estimate the systematic uncertainty related to peaking backgrounds, which is described in section [18.9,](#page-113-0) or that related to multiple candidates, which is described in section [18.10.](#page-114-0)

¹⁵¹⁷ 19 Calculating the overall systematic contri-bution

 The combined systematic uncertainty on each observable is then calculated from:

 $\bullet \text{ the largest of the cos } \theta_l \text{ [up,down], cos } \theta_K \text{ [up,down], and non-factorisable]}$ 1522 cos θ_l cos θ_K [up,down] variations; • the systematic variation of the muon identification efficiency; • the systematic variation of the tracking efficiency; • the systematic variation of the trigger efficiency; • the systematic variation between the IP smeared and the non-IP smeared simulated events; • the systematic variation of the signal mass resolution; • the systematic variation of the PID, by varying the PID binning; ¹⁵³⁰ • the systematic variation achieved when using the neighbouring q^2 bin for the acceptance; • the introduction of a 7\% S-wave; • the possible bias from peaking backgrounds. These contributions were added in quadrature ignoring correlations. For completeness, the variations that do not represent reasonable changes in the analysis procedure and instead constitute cross checks are listed below: • Cut on the hadron momentum; • Tightening of the peaking background vetoes; ¹⁵³⁹ • Reweighting (or not) the B momentum and the B p_T . • Removal of events containing multiple candidates. \bullet Variation of the background angular fit to 0^{th} , 1^{st} or 3^{rd} order (see Appendix [H\)](#page-191-0).

These variations do not have any significant impact on the final result.

 The values in the tables of systematic uncertainties, shown in section [19.0.1,](#page-118-0) are calculated in the following way. Toy datasets are produced by generating events and performing an accept-reject procedure to replicate the acceptance effect. The systematic studies are performed by re-weighting the events ac- cording to a systematically varied acceptance correction and performing the angular fit. The results of these fits are compared to the "nominal" fit result, when using the same acceptance correction that is used to accept-reject the events.

 Ten thousand datasets are generated using the same acceptance correction that is used to accept-reject the events. These datasets are fitted, obtaining a distribution of fitted values for each observable. The mean of these distri- butions are shown in the first row of the tables, the row labelled "nominal". Ten thousand datasets are then generated for each systematic variation, now using a systematically varied acceptance correction. The same fit is then performed on each of these datasets to obtain a systematically varied distri- bution of fitted values. The mean of each systematically varied distribution is extracted. The difference of the two means is then the systematic uncer- tainty that corresponds to each systematic variation, and is shown in the tables.

 The standard error on each 'nominal' value is also calculated. If the standard error is larger than a given systematic uncertainty obtained from the above procedure, then the standard error is taken as that systematic uncertainty.

Table 36: Variation of A_{FB} when systematically varying fit parameters or the weights applied to the input data set. AFB when systematically varying fit parameters or the weights applied to the input data set. Table 36: Variation of

Table 37: Variation of F_L when systematically varying fit parameters or the weights applied to the input data set. $F_{\rm L}$ when systematically varying fit parameters or the weights applied to the input data set. Table 37: Variation of

Table 38: Variation of S_3 when systematically varying fit parameters or the weights applied to the input data set. S3 when systematically varying fit parameters or the weights applied to the input data set. Table 38: Variation of

Table 39: Variation of S_9 when systematically varying fit parameters or the weights applied to the input data set. S_9 when systematically varying fit parameters or the weights applied to the input data set. Table 39: Variation of

Table 40: Variation of A₉ when systematically varying fit parameters or the weights applied to the input data set. A9 when systematically varying fit parameters or the weights applied to the input data set. Table 40: Variation of

Table 41: Variation of $A_{\mathsf{T}}^{\mathsf{Re}}$ T^{fe} when systematically varying fit parameters or the weights applied to the input data set.

Table 42: Variation of F_L when systematically varying fit parameters or the weights applied to the input data set. $F_{\rm L}$ when systematically varying fit parameters or the weights applied to the input data set. Table 42: Variation of

Table 43: Variation of र्नु $\frac{2}{1}$ when systematically varying fit parameters or the weights applied to the input data set.

Table 44: Variation of A_{Γ}^{In} T^m when systematically varying fit parameters or the weights applied to the input data set.

¹⁵⁶⁸ 20 Result plots and tables

 $_{1569}$ Figures. [43-](#page-128-0)[45](#page-129-0) show the results of the fits for F_L and the two sets of ob-¹⁵⁷⁰ servables A_{FB} , S_3 , A_9 and A_T^{Re} , A_T^{2} , A_T^{Im} in the six q^2 -bins. The statistical ¹⁵⁷¹ uncertainty on the points was obtained using the Feldman-Cousins technique. ¹⁵⁷² The results are also presented in Table. [45](#page-130-0) below.

¹⁵⁷³ The SM prediction for the angular observables, and the prediction rate-¹⁵⁷⁴ averaged over the q^2 bin, are also indicated on the figures. No SM prediction 1575 is included for the region between the $c\bar{c}$ resonances where the assumptions 1576 made in the prediction break down. No theory band is included for A_9 and ¹⁵⁷⁷ $A_{\rm T}^{Im}$, which are expected to be small, $\mathcal{O}(10^{-3})$ [\[25\]](#page-206-0), in the SM. The theory ¹⁵⁷⁸ band is also omitted for another reason, unlike the other observables, it could ¹⁵⁷⁹ be sensitive to the SM contributions from helicity suppressed (by m_s/m_b) ¹⁵⁸⁰ right-handed currents, that are usually neglected in the calculation. The $_{1581}$ observable S_9 is suppressed by the small size of the strong phase difference ¹⁵⁸² and is expected to be vanishingly small.

¹⁵⁸³ 20.1 Normal variables

Figure 43: Fraction of longitudinal polarisation of the K^{*0} , F_L and dimuon forward-backward asymmetry, A_{FB} , as a function of q^2 .

Figure 44: The observables S_3 , S_9 and A_9 as a function of q^2 .

¹⁵⁸⁴ 20.2 Reparam variables

Figure 45: Transverse asymmetries, A_T^{Re} and A_T^2 as a function of q^2 . No theory band is included for the A^{Re}_T prediction, the central value of the theory prediction is however indicated by the continuous (blue) curve.

The first uncertainty is statistical and the second systematic.					
	A_{FB}	$F_{\rm L}$	S_3	S_9	
$0.10 < q^2 < 2.00$	$-0.12 - 0.00$ $-0.02 + 0.12 + 0.0$	$+0.37^{+0.10+0.7}_{-0.06}$	$-0.10 - 0.00$ $-0.04 + 0.10 + 0.04$	$-0.09 - 0.01$ pip+01-05-00:0+	
$2.00 < q^2 < 4.30$	$-0.20^{+0.08}_{-0.08}$	$\begin{array}{l} +0.9-0.99-0.03\\ +0.74-0.0+0.10\\ +0.54-0.09-0.03\\ 0.00-0.00-0.03\\ 0.010+0.01\\ 0.010+0.01\end{array}$	$-0.04 + 0.10 + 0.01$	$-0.03^{+0.11+0.00}_{-0.04}$ $-0.04 - 0.00$	
$4.30 < q^2 < 8.68$	$+0.16^{+0.06+0.06}_{-0.02}$	$-0.07 - 0.03$	$+0.08^{+0.07+0.01}_{-0.07+0.01}$	$+0.01^{+0.08+0.00}_{-0.06-0.000}_{-0.10+0.000}_{-0.00}$	
$10.09 < q^2 < 12.86$	$+0.11$ +0.28+0.07+0.02 +0.28-0.06-0.01	$+0.48 + 0.08 + 0.03 + 0.03 + 0.03$	$-0.16^{+0.06-0.01}_{-0.11+0.01}$	$-0.11 - 0.00$	
$14.18 < q^2 < 16.00$	$+0.51_{-0.05-0.01}^{+0.07+0.02}$	$+0.33^{+0.08}_{-0.07}^{+0.08}_{-0.09}^{+0.03}_{-0.09}$ +0.37 $^{+0.09}_{-0.09}$	$+0.03^{+0.09+0.01}_{-0.04}$ $-0.10 - 0.01$	$0.00+0.00+0.01$	
$16.00 < q^2 < 19.00$	$+0.30^{+0.08+0.02}_{-0.02}$ $-0.08 - 0.01$	$-0.07 - 0.03$	$0.99 + 0.10 + 0.02$ $0.09 - 0.09 - 0.01$	$+0.06^{+0.11+0.00}_{-0.11+0.00}$ $-0.10 - 0.01$	
$1.00 < q^2 < 6.00$	$0, 17 + 0.06 + 0.02$ $-0.06 - 0.00$ ī	$+0.65^{+0.08+0.01}_{-0.07-0.03}$	$+0.03^{+0.07+0.00}_{-0.07-0.01}$	$+0.01^{+0.09+0.00}_{-0.08-0.00}$	
	Æ ^e	र्भ	\bar{A}^m_Γ	A_9	
$0.10 < q^2 < 2.00$	$-0.05 + 0.26 + 0.02$	$-0.14_{-0.30}^{+0.34+0.1}$	$+0.16^{+0.31+0.1}_{-0.22}$	$\begin{array}{c} +0.12 + 0.09 + 0.01 \ +0.12 - 0.09 - 0.01 \end{array}$	
$2.00 < q^2 < 4.30$	$-1.00^{+0.24-0.00}_{-0.13+0.04}$	$-0.29 - 0.39 - 0.02$ -0.29+0.65+0.02 -0.46-0.01	$-0.23^{+0.77+0.02}_{-0.07+0.02}$	$\begin{matrix} +0.06^{+0.12+0.01}_{-0.08-0.00} \\ -0.13^{+0.07+0.01}_{-0.07-0.01} \end{matrix}$	
$4.30 < q^2 < 8.68$	$-0.14 - 0.03$ $+0.50^{+0.16+0.01}_{-0.7}$	$\begin{matrix} +0.36^{+0.30+0.03}_{-0.31-0.03} \\ -0.60^{+0.31-0.05}_{-0.42+0.05} \\ \end{matrix}$	$-0.31 - 0.01$ $+0.05^{+0.31+0.01}_{-0.21}$		
$10.09 < q^2 < 12.86$	$+0.71^{+0.15+0.01}_{-0.15-0.03}$		$-0.06 + 0.43 + 0.03$	$-0.00^{+0.11+0.00}_{-0.11-0.01}_{-0.11+0.01}_{-0.08-0.01}$	
$14.18 < q^2 < 16.00$	$+1.00 + 0.00 + 0.01$	$+0.07 + 0.26 + 0.03$	$\begin{array}{c} -0.00 \\ +0.02 \\ +0.02 \\ +0.03 \\ +0.18 \\ +0.18 \\ +0.35 \\ +0.$	$-0.08 - 0.01$	
$16.00 < q^2 < 19.00$	$+1.00_{-0.05-0.02}^{+0.05-0.02}$ +0.64+0.15+0.01	$-0.1 - 0.26 - 0.03$ $0.01 - 0.28 - 0.02$ $-35 + 0.06$	$(-0.32 - 0.02)$	$0.04010 + 0.01010$ $0.10 - 0.01$ スコール	
$1.00 < q^2 < 6.00$	$-0.22 - 0.00$ $-0.66 + 0.24 + 0.04$	$-0.41 - 0.02$ $\frac{1}{1}$ \rightarrow $\frac{1}{1}$ $\frac{0.03}{0.03}$ -1.0	$+0.41 + 0.42 + 0.02$ $-0.45 - 0.03$	$-0.08 - 0.01$ $+0.03^{+0.08+0.08}_{-0.08}$	

Table 45: Central values for, and statistical and systematic uncertainties on A_{FB} , F_{L} , S_9 , S_3 , A_{T}^{Re} T^e , A_T^2 and $A_{\rm T}^{Im}$ in bins of σ

¹⁵⁸⁵ 21 Zero crossing point extraction

¹⁵⁸⁶ As discussed in Sec. [1](#page-9-0) the zero-crossing point of $A_{FB} (q_0^2)$ is well defined in ¹⁵⁸⁷ the SM and it is sensitive to New Physics through differences in the Wilson 1588 coefficients C_7 , C_9 and C_{10} which determine the zero-crossing point. A mea-¹⁵⁸⁹ surement of q_0^2 is therefore an important input to determine whether there ¹⁵⁹⁰ are New Physics contributions to the $B^0 \to K^{*0} \mu^+ \mu^-$ decay. This measure-¹⁵⁹¹ ment is however not straightforward with limited statistics. The simplest ¹⁵⁹² imaginable method to determine q_0^2 would be to fit a straight line around ¹⁵⁹³ the region where A_{FB} changes sign. This procedure is unbiased if A_{FB} can ¹⁵⁹⁴ be assumed linear within a known interval around q_0^2 . Unfortunately such ¹⁵⁹⁵ assumption does not always hold. This method is therefore not applicable $_{1596}$ unless assumptions on the model are made, e.g. that A_{FB} follows a SM-like ¹⁵⁹⁷ curve. In practice, the estimate of q_0^2 becomes dependent on how the data ¹⁵⁹⁸ is binned in q^2 and over which range q^2 is assumed to be linear. Moreover, ¹⁵⁹⁹ in order to decide a suitable fit range it would be necessary to examine A_{FB} ¹⁶⁰⁰ itself. To ensure an unbiased result, this decision should be made without 1601 reference to the shape of $A_{FB} (q^2)$.

1602 Instead of performing an angular analysis (and fitting $\cos \theta_l$) to extract ¹⁶⁰³ A_{FB} in a bin of q^2 , an alternative strategy is adopted. Two independent, ¹⁶⁰⁴ unbinned, maximum likelihood fits are performed to the distribution of can- $_{1605}$ didates in q^2 for forward- and backward-going events. This procedure is ¹⁶⁰⁶ referred to below as an unbinned counting method. The PDFs for forward-¹⁶⁰⁷ and backward-going events are expected to have a smooth behaviour as a 1608 function as of q^2 in the range $1-7.8GeV^2$, i.e. far from the photon pole ¹⁶⁰⁹ and from the J/ψ resonance. The range $1 < q^2 < 7.8 \,\text{GeV}^2/c^4$ is a natural ¹⁶¹⁰ choice. Above $7.8 \,\text{GeV}^2/c^4$ there can be a non-negligible contribution from ¹⁶¹¹ the radiative tails of the J/ψ (see Sec. [3.4\)](#page-17-0). Below $1 \text{ GeV}^2/c^4$ the shape of $_{1612}$ the q^2 spectrum can vary rapidly and can be difficult to parametrise as a ¹⁶¹³ smoothly varying polynomial.

 $\text{In the } 1 \leq q^2 \leq 7.8 \,\text{GeV}^2/c^4$ range the distribution of forward- and ¹⁶¹⁵ backward-going events can be fitted with polynomial distributions in q^2 and $_{1616}$ consequently A_{FB} can be computed according to:

$$
AFB(q^2) = \frac{N_F P D F_F(q^2) - N_B P D F_B(q^2)}{N_F P D F_F(q^2) + N_B P D F_B(q^2)}.
$$
\n(18)

1617 where $N_{F,B}$ is the number of forward- and backward-going events and $PDF_{F,B}$ $_{1618}$ is the fitted PDFs as a function of q^2 for forward- and backward-going sig-¹⁶¹⁹ nal events. To separate signal and background, the fit is performed in two ¹⁶²⁰ dimensions: in the invariant mass of the B^0 candidate and q^2 . The q^2 dis-¹⁶²¹ tribution of the signal has been parametrised with a third order Chebychev

 polynomial. The mass model described in Sec. [4](#page-21-0) is used for the signal mass shape. The impact of the detector acceptance is accounted for by weighting candidates in the fit as described in Sec. [11.](#page-57-0)

 In summary the analysis strategy for measuring the zero-crossing point $_{1626}$ consists of fitting separately the q^2 -dependence of forward and backward events. The goodness of fit for forward- and backward going events will $_{1628}$ be estimated before computing A_{FB} using the point-to-point dissimilarity 1629 technique described in Ref. [\[1\]](#page-204-0). Finally the A_{FB} is estimated by combining the 1630 q^2 dependence of the forward- and backward-going events. The estimation of the uncertainty on the zero-crossing point is described in Sec. [21.1](#page-132-0) below.

21.1 Estimating the 68% confidence level on q_0^2 $\overline{0}$

 MC studies have shown that the error distribution of the coefficients of the polynomials is often not Gaussian and therefore an estimate for the uncer- tainty on the crossing point can not be calculated directly from the covariance ¹⁶³⁶ matrix of the fit. The use of event weights, can also lead the $\Delta LL = 1/2$ estimate to under-estimate the 68% confidence interval.

1638 Two methods have been explored to estimate the uncertainty on q_0^2 .

• the use of bootstrapping to obtain a confidence interval.

• Toy MC generated from the fitted forward and backward pdf.

These methods are described in more detail below.

21.1.1 Bootstrapped confidence interval

 A 'bootstrap' method is used to calculate the 68% confidence interval on the zero-crossing point. Bootstrapping uses a re-sampling technique to generate many individual data samples.

 \mathcal{L}_{1646} Schematically, what is done is to take the dataset of N events,

$$
d = {\{\vec{\Omega}_0, \vec{\Omega}_1, \dots, \vec{\Omega}_{N-2}, \vec{\Omega}_{N-1}\}}
$$

 and to create a new, re-sampled dataset from it of the same size (the number $_{1648}$ of events is varied according with a Poisson distribution), d_1 . The re-sampling allows events to be duplicated, e.g.:

$$
d_1 = \{\vec{\Omega}_0, \vec{\Omega}_0, \dots, \vec{\Omega}_{N-2}, \vec{\Omega}_{N-1}\}
$$

 would be allowed where event '0' appears twice and event '1' is omitted from d₁. The likelihood fit for the zero-crossing point is the performed on each of the re-sampled datasets, leading to a distribution of zero-crossing points. ¹⁶⁵³ This distribution is then used to estimate the 68% confidence interval on q_0^2 .

21.1.2 Confidence interval with toy study

 To crosscheck the estimation of the uncertainty obtained with bootstrap- ping, a slightly different approach was performed as well. The pdfs for the forward and backward distributions were used as an input to a toy simu- lation. In this simulation, many datasets were created, where the events where distributed following the input pdfs and the number of events in the datasets were fluctuated following a poissonian distribution around the value measured in collision data. For all these samples the zero-crossing point was determined and the 68% confidence interval evaluated in the same was as for the bootstrapping. The resulting interval is a bit more narrow than the one obtained with the bootstrapping but still in good agreement. The differ- ence may be a consequence of randomising the weights in the bootstrapping, which is not the case for this technique.

¹⁶⁶⁷ 21.2 MC study for the zero-crossing extraction

 Toy Monte Carlo studies have been performed before the unblinding to vali-¹⁶⁶⁹ date the method described above and study its sensitivity to a SM-like A_{FB} . $_{1670}$ The toys were generated with a SM-like q^2 dependence of forward- and back- ward going events and the expected signal-to-background ratio and signal ¹⁶⁷² yield in $1 < q^2 < 7.8 \,\text{GeV}^2/c^4$. The distribution of forward- and backward- going background events was taken from the upper mass sideband of the ¹⁶⁷⁴ data. Fig. [46](#page-134-0) shows the K^+ π⁻ $\mu^+\mu^-$ invariant mass and q^2 distribution for ¹⁶⁷⁵ a single toy experiment. A fit to the B^0 mass and q^2 is overlaid.

 The result of performing 200 toys with a SM-like zero-crossing point is $_{1677}$ shown in Fig. [47.](#page-135-0) The mean value of A_{FB} in the 200 toys is found to be consistent, as expected, with the SM input distribution.

 μ_{1679} Unfortunately, due to statistical fluctuations, with 1 fb^{-1} it is not guaran- teed that there will be a single, well-defined zero-crossing point. According to MC simulations, in the SM, there is about a 20% probability to measure either no zero-crossing point, or more than one zero-crossing, in a data sam- $_{1683}$ ple corresponding to 1 fb⁻¹. An illustration of this effect is shown in Fig. [48.](#page-135-1) It was decided before unblinding the data to quote a zero-crossing point only if the fit to data shows a single well defined value (alternatively the 90% CL will be given).

 It is also apparent from toy-studies that the errors on the fit parameters are not Gaussian. The covariance matrix from the fit is therefore not a good

Figure 46: Fit to the invariant mass of the B-meson candidate, for forward (a) and backward (b) events and fit to the q^2 distribution for forward (c) and backward (d). The signal component (red) and background component (green) are indicated.

Figure 47: The hashed region represents the 68% confidence region from 200 toys at each q^2 value for a SM-like q^2 dependence of forward- and backwardgoing events. The blue marker is the mean value of $A_{FB}(q^2)$ for the 200 toys, and the red marker is the true value of $A_{FB}(q^2)$ used as input to the toy-MC.

(a) Example of a sub-sample with one sin-(b) Example of a sub-sample with no zerogle zero-crossing point crossing point

Figure 48: Two examples of A_{FB} obtained from toy-studies with the unbinned counting method. The toy experiment were carried out with statistics equivalent to 1 fb⁻¹ and a SM-like $A_{FB}(q^2)$. The data-points in the figure are a binned estimate of A_{FB} in $1 \text{ GeV}^2/c^4$ q^2 bins. The left-hand figure is indicative of an 'unlucky' result where, due to statistical fluctuations, no zero-crossing point is visible.

Figure 49: Examples of 'posterior' distributions obtained for the zero-crossing point of the A_{FB} for two different toy-MC experiments.

 estimate of parameter errors, and cannot be used to estimate the uncertainty on the zero-crossing point. Two examples are show in Fig. [49.](#page-136-0)

 The impact of the order of the polynomials has also been studied by using the MC simulation and found to be negligible for polynomials of order higher than three.

(b) Backward-going events

Figure 50: Fit to the invariant mass of the B-meson candidate, for forward and backward going events in data.

1694 22 Zero crossing point result

 The procedure described in the previous sections for the extraction of the zero-crossing point is here applied to data. The invariant mass of the B^0 candidates is shown in Fig [50](#page-137-0) for forward- and backward-going events, the 1698 result of the fit is also shown. The q^2 distribution for forward- and backward- going events in the signal region is shown in Fig. [51.](#page-138-0) After fitting separately forward and backward events the quality of the fit was investigated with the point-to-point dissimilarity technique, the p-value obtained was 0.6 for the fit to the forward events and 0.9 for the fit to the backward events.

 The forward-backward asymmetry is shown in Fig [52,](#page-139-0) the curve is the result of the unbinned counting method applied to data, the points are the result of a simple counting experiment used as a cross check. The distribution of the zero-crossing points for several toy distribution assuming the PDF

Figure 51: Fit to q^2 distribution for forward and backward going events in data.

Figure 52: The A_{FB} as a function of q^2 , that comes from the unbinned counting experiment (blue dashed line). The data-points are the result of counting forward- and backward-going events in $1 \text{ GeV}^2/c^4$ bins of q^2 .

Figure 53: The distribution of the zero-crossing points for toy experiments generated by assuming the forward and backward Pdfs measured in data.

Figure 54: The distribution of the zero-crossing points in the bootstrapping method. The red region shows the 68% CL.

measured in data is shown Fig. [53.](#page-139-1)

The distribution of zero crossing points for the bootstrapping (re-sampling) technique is shown in Fig. [54.](#page-140-0) The result, which only includes the statistical error is:

$$
q_0^2 = (4.9^{+0.9}_{-0.9}) \,\text{GeV}^2/c^4,\tag{19}
$$

 where the error has been determined by re-sampling (bootstrapping) the data 200'000 times, see Sec. [21.1.1](#page-132-1) for a description of the method. The error is in very good agreement to what is expected when generating many toy-¹⁷¹¹ experiments, where the result is $q_0^2 = (4.9^{+0.9}_{-0.8}) \text{ GeV}^2/c^4$ (compare Fig [54](#page-140-0) with Fig. [53\)](#page-139-1). The toy study was carried out by generating pseudo-experiments at the central value measured in data. The number of event observed in the data is Poisson-fluctuated in the toy-experiments. The method is described in more detail in Sect. [21.1.2.](#page-133-0)

¹⁷¹⁶ 22.1 Systematic uncertainties

The following sources of systematic errors were considered:

 1 Uncertainty in the IP smearing: The fit is repeated using an acceptance 1719 model where the MC sample is not IP smeared.

- 2 Uncertainty in the binning of the PID variables: To account for this uncertainty, 50% of the events in the lowest 30% of a certain bin were migrated to the lower bin and 50% of the events in the highest 30% of the bin were migrated to the higher bin.
- 3 Uncertainty on the tracking efficiency: Possible systematic effects are taken into account by assigning the tracks with a momentum lower than $10 \text{ GeV}/c$ an efficiency which is lower (higher) by one standard deviation and by assigning the tracks with a momentum higher than $10 \text{ GeV}/c$ and efficiency which is higher (lower) by one standard deviation.
- 4 Uncertainty in the trigger efficiency: Systematic effects were accounted for by increasing or decreasing the trigger efficiency for muons with a momentum below $3 \text{GeV}/c$ by 3% for the acceptance correction.
- 5 Uncertainty of the IsMuon criterion: The systematic uncertainty is as- sessed by fluctuating downwards the efficiency for tracks with a momen- tum less than 10 GeV/c by the statistical uncertainty and by fluctuating upwards the efficiency for tracks with a momentum more than 10 GeV/ c by the statistical uncertainty. The procedure is also repeated by chang-ing the direction of fluctuation for the corresponding two categories.
- 6 Acceptance correction: The acceptance correction is varied as described in Sec. [18.3.](#page-108-0)
- 7 The widths (σ) of the Gaussian component of both crystal ball func- $\frac{1}{1741}$ tions shows a slight dependence on q^2 which amounts to a slope corre-1742 sponding to about 5%. These widths are therefore varied by $\pm 5\%$ in the fit and the result is recalculated.
- Furthermore, some crosschecks were performed as well:
- 8 The fit was performed with and without reweighting the momentum of the B in the simulation to the values of the collision data.
- 9 The fit was performed with and without reweighting the transverse momentum of the B in the simulation to the values of the collision data.
- 10 The fit was performed with and without cutting on the momentum of 3 GeV/c on the hadrons.

 The zero crossing points, evaluated under the changes to the data sample corresponding to the systematic checks, are listed in Table [46.](#page-142-0) Even when summing the systematic uncertainties and the deviations from the cross- checks in quadrature, which clearly overestimates the uncertainty, the overall systematic uncertainty is small compared to the statistical uncertainty and was not included in the overall uncertainty.

Table 46: Values for the zero-crossing point and deviation from the nominal value for all evaluations of the systematic uncertainty and the performed crosschecks. The type corresponds to the type given in the list of systematic uncertainties and crosschecks. The overall systematic uncertainty is calculated by adding all contributions (also the ones from the crosschecks) in quadrature.

Figure 55: The A_{FB} as a function of q^2 , obtained with unbinned counting (blue dashed line). The black data-points are the result of counting forwardand backward-going events in $1 \text{ GeV}^2/c^4$ bins of q^2 . The red hashed region corresponds to the 68% confidence interval.

¹⁷⁵⁸ 22.1.1 Result plot

 1759 A plot of A_{FB} obtained with the unbinned counting method, the counting ¹⁷⁶⁰ experiment in $1 \text{ GeV}^2/c^4$ bins and the 68% confidence interval on q_0^2 can be ¹⁷⁶¹ seen in Fig. [55.](#page-143-0)

¹⁷⁶² 22.2 Changes with respect to the preliminary result

¹⁷⁶³ The preliminary result quoted in Ref. [\[8\]](#page-204-1), based on the same dataset, has

$$
q_0^2 = 4.9^{+1.3}_{-1.1} \,\text{GeV}^2/c^4 \ .
$$

 The difference between the result presented here and this preliminary result is due (predominatly) to a bug that was discovered in the preliminary result. The bug related to the use of weighted datasets in RooFit. It was discovered that when cloning a weighted dataset, information about the weights was lost (even though the dataset still had a flag set to say that it was weighted). Without the weights applied the forward backward asymmetry is reduced, reducing the gradient of A_{FB} in the region around the zero-crossing point ¹⁷⁷¹ and increasing the error on q_0^2 . As expected, the value of q_0^2 itself is almost
unchanged by turning on/off the weights to correct for the acceptance cor-1773 rection. The effect is largest for low q^2 where the acceptance effects in $\cos \theta_{\ell}$ can be large.

¹⁷⁷⁵ 23 Conclusions

 Measurements of the differential branching fraction and angular observables ¹⁷⁷⁷ $S_3(A_T^2)$, F_L , S_9 , A_{FB} (A_T^{Re}) and the CP asymmetry A_9 of the $B^0 \to K^{*0} \mu^+ \mu^-$ decay have been presented, using 1 fb⁻¹ of integrated luminosity collected by LHCb in 2011. These are the most precise measurements of these quantities to date and are consistent with the SM predictions. A first measurement of the zero-crossing point of the forward-backward asymmetry has also been pre-¹⁷⁸² sented. The zero-crossing point is determined to be $q_0^2 = (4.9^{+0.9}_{-0.9}) \text{ GeV}^2/c^4$.

 The angular analysis and zero-crossing point measurement are currently statistically limited. For the differential branching fraction the statistical uncertainties are comparable to the size of the systematic uncertainties. The measurement would, however, no longer be systematically limitted if it were binned finer in q^2 and this should be considered for future iterations of the analysis.

 The systematic uncertainty coming from the acceptance correction can be viewed as being fairly conservative and could improve with increased MC ¹⁷⁹¹ statistics and a better understanding of the $B^0 \to K^{*0} J/\psi$ control channel 1792 (where at the extremes of $\cos \theta_K$ the data disagrees with the fit-model at the $_{1793}$ level of \sim 5%).

1794 Appendix

¹⁷⁹⁵ This appendix includes supplementary information for the analysis.

1796 A Data/MC comparison

¹⁷⁹⁷ The momentum and p_T distribution of $B^0 \to K^{*0} J/\psi$ candidates in the MC ¹⁷⁹⁸ (MC11a) have been cross checked with the data after the application of the ¹⁷⁹⁹ full offline selection (and IP smearing of the MC) and are found to be in 1800 good agreement. The distributions of the $B⁰$ and daughter momentum are ¹⁸⁰¹ shown in Fig. [56.](#page-147-0) The DLL distribution of the daughters is shown in Fig. [58.](#page-149-0) ¹⁸⁰² The IP smearing of the daughter track states tends to over smear the end 1803 vertex quality of the fitted B vertex (see Fig. [59\)](#page-149-1). This quantiy is not very 1804 correlated to q^2 or to the angualr distribution of the K^{*0} or dimuon system ¹⁸⁰⁵ and differences between data and MC can be safely ignored.

Figure 56: Comparison of the B^0 and daughter momentum and p_T distributions for $B^0 \to J/\psi K^{*0}$ candidates in the data and the MC. The three distributions are Data (Black), data-corrected simulated events (Red) and uncorrected simulated events (Green)

 The comparison between the data and the simulation has been investi- gated after re-weighting to correct for the small disagreement in the underly- ing B-momentum spectrum. This is shown is Fig. [57.](#page-148-0) Even after re-weighting 1809 for difference in the underlying B^0 momentum spectrum between data and MC, a perfect agreement is still not expected between the daughter momen¹⁸¹¹ tum and transverse-momentum spectrums. Difference are expected due to 1812 a ∼ 7% S-wave contribution in the data, that is not present in the MC. 1813 The intereference between the S-wave and P-wave resutls in a forward back-1814 ward asymmetry in $\cos \theta_K$, which in turn produces a harder pion momentum ¹⁸¹⁵ spectrum in data than in the MC.

Figure 57: Ratio of the B^0 and daughter momentum and p_T distributions for $B^0 \to J/\psi K^{*0}$ candidates in the data and the MC. The three distributions are Data/corrected simulation (Black), data / uncorrected simulated events (Red)

Figure 58: Comparison of the daughter DLL distributions for $B^0 \to J\!/\psi \, K^{*0}$ candidates in the data and the MC. The three distributions are Data (Black), data-corrected simulated events (Red) and uncorrected simulated events (Green)

Figure 59: Comparison of the B end vertex χ^2 distributions for $B^0 \to J/\psi K^{*0}$ candidates in the data and the MC. The three distributions are Data (Black), data-corrected simulated events (Red) and uncorrected simulated events (Green)

 In general there is good agreement between data and MC for all of the input variables that are used in the BDT. The first order correlations be- tween the different variables are also in general very well re-produced. The only a couple of places where the correaltions are not faithfully reproduced: the correlation between the B end vertex and the impact parameter of the daughters and the correlation between the various daughter DLL dsitribu-tions. The latter is dilluted in the MC by the re-sampling that is applied.

¹⁸²³ A.1 Comparison of data and MC efficiency

 As a further check of the data-MC agreement, Fig. [60](#page-150-0) shows the ratio of 1825 offline selected to stripped candidates as a function of $\cos \theta_{\ell}$, $\cos \theta_{K}$ and the ϕ angle in data and MC for a BDT cut at 0.1. Within the present statistics, the MC accuratley reproduces the distribution seen in the data.

Figure 60: Comparison of the BDT cut "efficiency" as a function of $\cos \theta_{\ell}$, $\cos \theta_K$ and ϕ between data and MC for background subtracted $B^0 \to J/\psi K^{*0}$ candidates. The solid (black) markers are fromthe data. The open (red) markers from MC. Fig (a) shows the BDT distribution for data/MC.Events are selected offline if the BDT response is larger than 0.1.

1828 B Factorisation of the acceptance correction

1829 If the efficiency in a narrow bin of q^2 can be factorised into separate functions 1830 of $\cos \theta_l$, $\cos \theta_K$ and ϕ :

$$
\varepsilon(\cos\theta_l, \cos\theta_K, \phi) = \varepsilon(\cos\theta_l)\varepsilon(\cos\theta_K)\varepsilon(\phi)
$$

¹⁸³¹ and the underlying 'physics' distribution of the events can also be factorised, 1832 then the efficiency as a function of ϕ can be written as:

$$
\varepsilon(\phi) = \frac{\int \int \frac{d^3 \Gamma}{d \cos \theta_l \, d \cos \theta_K \, d\phi} \varepsilon(\cos \theta_l, \cos \theta_K, \phi) \, d \cos \theta_l \, d \cos \theta_K}{\int \int \frac{d^3 \Gamma}{d \cos \theta_l \, d \cos \theta_K \, d\phi} d \cos \theta_l \, d \cos \theta_K}
$$

 It is a simple ratio of the distribution of the number of events after selection as a function of ϕ to the distribution at generator level (before production cuts). If the underlying physics does not factorise into three separate an- gular dsitributions, then even if the acceptance factorises it is not possible 1837 to estimate the efficiency in ϕ from the distribution of events in the ϕ angle ¹⁸³⁸ alone. This is the case for $B^0 \to K^{*0} \mu^+ \mu^-$ when $F_L \neq 0$. If the phyics is non- factorisable then the factorised efficiencies can still be taken from physics-MC ¹⁸⁴⁰ but would require a fit to the distribution of events in $(\cos \theta_l, \cos \theta_K, \phi)$, not just a single angular projection.

¹⁸⁴² For phase-space MC the situation is particularly simple as:

$$
\frac{d^3\Gamma}{d\cos\theta_l\,d\cos\theta_K\,d\phi} = \frac{1}{8\pi} ,
$$

¹⁸⁴³ which not only factorises, but is flat in all three angles. In phase-space MC $1844 \in \mathcal{E}(\phi)$ can be trivially taken from the distribution of events after reconstruc-1845 tion, the trigger and offline selection. In a bin of q^2 , "k", the efficiency is ¹⁸⁴⁶ then given by:

$$
\varepsilon(q^2, \cos \theta_l, \cos \theta_K, \phi)_k = 8\pi \frac{N_{\text{Sel};k}}{N_{\text{Gen};k}} f(\phi)_k f(\cos \theta_l)_k f(\cos \theta_K)_k
$$

¹⁸⁴⁷ where e.g.

$$
f(\phi) = \int \int \frac{d^3 \Gamma}{d \cos \theta_l \, d \cos \theta_K \, d\phi} \varepsilon(\cos \theta_l, \cos \theta_K, \phi) \, d \cos \theta_l \, d \cos \theta_K
$$

¹⁸⁴⁸ is a probability density function that describes the distribution of events in 1849 ϕ after reconstruction, selection etc. The ratio, $N_{\text{Sel}}/N_{\text{Gen}}$, of events in a 1850 bin of q^2 after selection to the number at generator level is used to normalise

¹⁸⁵¹ the relative efficiency between q^2 bins. The functions $f(\phi)$, $f(\cos \theta)$ and ¹⁸⁵² $f(\cos \theta_K)$ are normalised such that the integrals:

$$
\int_{-\pi}^{\pi} f(\phi)_k d\phi = 1 \ , \ \int_{-1}^{1} f(\cos \theta_l)_k d\cos \theta_l = 1 \ \text{and} \ \int_{-1}^{1} f(\cos \theta_K)_k d\cos \theta_K = 1 \ .
$$

B.1 Example dsitributions at low- and high- q^2 1853

¹⁸⁵⁴ The distribution of events after reconstruction, the trigger and selection in $\cos \theta_l$, $\cos \theta_K$ and ϕ with $1 < q^2 < 1.5 \,\text{GeV}^2/c^4$ and $17 < q^2 < 17.5 \,\text{GeV}^2/c^4$ 1855 ¹⁸⁵⁶ are shown in Figs. [61](#page-152-0) and [62](#page-153-0) respectively. They are fitted with a $6th$ order 1857 Chebychev polynomial, which for $\cos \theta_l$ and ϕ only contains even order terms.

Figure 61: One dimensional projections of the distribution of events in $\cos \theta_l$, $\cos \theta_K$ and ϕ in phase-space MC after applying the full selection in the 1 < $q^2 < 1.5 \,\text{GeV}^2/c^4$ region.

Figure 62: One dimensional projections of the distribution of events in $\cos \theta_l$, $\cos \theta_K$ and ϕ in phase-space MC after applying the full selection in the 17 < $q^2 < 17.5 \,\text{GeV}^2/c^4$ region.

¹⁸⁵⁸ The degree to which the efficiencies factorise is explored for $1 < q² <$ ¹⁸⁵⁹ 1.5 GeV²/ c^4 and 17 < q^2 < 17.5 GeV²/ c^4 in Figs. [63](#page-154-0) and [64](#page-155-0) below. The two dimensional dsitribution of phase-space MC events after reconstruction, the trigger and offline selection is compared to the distribution that would be obtained using toy-MC if it is assumed that the efficiency factorises into three one dimensional distributions in Figs. [61](#page-152-0) and [62.](#page-153-0) Qualitatively, the toy-MC reproduces many of the features seen in the phase-space MC. To try and quantify any potential differences a plot of the difference between phase- space MC and the toy-MC (divided by the error on the phase-space MC) is included. There are no regions where the factorisation is seen to break down. This agrees with the result of the unbinned goodness of fit test pefromed in three dimensions that was reported in Sec. [11.](#page-57-0)

(a) $\cos \theta_l$ versus $\cos \theta_K$ for $1 < q^2 < 1.5 \,\text{GeV}^2/c^4$

(b) $\cos \theta_l$ versus ϕ for $1 < q^2 < 1.5 \,\text{GeV}^2/c^4$

(c) ϕ versus $\cos \theta_K$ for $1 < q^2 < 1.5 \,\text{GeV}^2/c^4$

Figure 63: The distribution of events in phase-space MC in the $1 < q² <$ $1.5 \,\text{GeV}^2/c^4$ mass region after reconstruction, the trigger and offline selection (left). The corresponding dsitribution in toy-MC if it is assumed that the efficiency can be factorised (centre) and the difference between the toy-MC and phase-space MC, divided by the error on the phase-space MC (right).

(a) $\cos \theta_l$ versus $\cos \theta_K$ for $17 < q^2 < 17.5 \,\text{GeV}^2/c^4$

(b) $\cos \theta_l$ versus ϕ for $17 < q^2 < 17.5 \,\text{GeV}^2/c^4$

(c) ϕ versus $\cos \theta_K$ for $17 < q^2 < 17.5 \,\text{GeV}^2/c^4$

Figure 64: The distribution of events in phase-space MC in the $17 < q^2 <$ $17.5 \,\text{GeV}^2/c^4$ mass region after reconstruction, the trigger and offline selection (left). The corresponding dsitribution in toy-MC if it is assumed that the efficiency can be factorised (centre) and the difference between the toy-MC and phase-space MC, divided by the error on the phase-space MC (right).

1870 B.2 Pull distributions from the factorisation

 The agreement between the phase-space MC after the application of the reconstruction, stripping, trigger and offline selection and a factorised model is explored further by calculating between the MC and the factorised model ¹⁸⁷⁴ in bins of $\cos \theta_l$, $\cos \theta_K$ and ϕ . The "pull" distributions for the J/ψ region, ¹⁸⁷⁵ 1 < q^2 < 1.5 GeV²/ c^4 and 17 < q^2 < 17.5 GeV²/ c^4 are shown in Fig. [65.](#page-157-0) Eight bins have been used in each of the angles, i.e. 512 bins in total appear in the figure. There are no visible outliers and each of the "pull" distributions has a mean of zero and is consistent with having width one.

Figure 65: The "pull" distribution of the difference between the number of phase-space MC events in a bin of $\cos \theta_l$, $\cos \theta_K$ and ϕ and the number predicted by a factorised model divided by the error on the difference.

1879 B.3 Sensitivity to non-factorisable effects

 The level to which we are sensitive to non-factorisable effects in the efficiency distribution has been investigated using toy simulations. First a set of toys was generated according to the factorised efficiency distribution that is seen in the phase-space MC. This dsitribution was then fitted with the same factorised model and the pull distribution was plotted for bins of the dataset with respect to the factorised model. As expected this data set has a well behaved pull distribution with respect to the model, with width of one and a mean of zero.

 To simulate a non-factorisable efficiency distribution, a new set of toys was generated. The PDF used to generate the first set of toys was multiplied by a non-factorisable contribution:

$$
1 + a\sin(\pi\cos\theta_l)\sin(\pi\cos\theta_K) \tag{20}
$$

 $_{1891}$ where a is a scaling factor indicating the size of the non-facotrisable effect. This set of toys was then fitted with the factorised model. For small values of a, the pull dsitribution looks reasonable, but as a increases a large number of bins in the toy dataset are seen to be poorly described by the factorised model. This test was performed for 40 scaling factors between 0 and 1. The 1896 number of extreme pulls is significant for $a \geq 0.1$. The value for this test when performed on the phase space simulation data-set used to obtain the efficiency PDF is 5.

 $_{1899}$ C $\,$ Comparison of B^0 and $\,\overline{\!B^{0}}\!$ distributions for $B^0\!\rightarrow K^{*0}J\!/\!\psi$

Figure 66: A comparison of the angular distribution of B^0 and $\overline{B}{}^0$ decays for the channel $B^0 \to K^{*0} J/\psi$.

Figure 67: A comparison of the kaon and pion DLL distributions for B^0 and \overline{B}^0 decays for the channel $B^0 \to K^{*0} J/\psi$.

¹⁹⁰¹ D Lepton mass terms

¹⁹⁰² If the lepton mass is not neglected then extra terms are introduced into the 1903 angular distribution and the I_i terms can be writen as:

$$
\frac{1}{\Gamma}I_{1}^{S} = \left(\frac{3}{4}(1 - F_{L}) \times (1 - \frac{4m_{\mu}^{2}}{3q^{2}}) + \frac{1}{\Gamma} \frac{4m_{\mu}^{2}}{q^{2}} \Re\left(A_{\perp L} A_{\perp R}^{*} + A_{\parallel L} A_{\parallel R}^{*}\right)\right) \sin^{2} \theta_{K}
$$
\n
$$
\frac{1}{\Gamma}I_{1}^{C} = \left(F_{L} + \frac{1}{\Gamma} \frac{4m_{\mu}^{2}}{q^{2}} \times \left(|A_{t}|^{2} + 2\Re(A_{0 L} A_{0 R}^{*})\right)\right) \cos^{2} \theta_{K}
$$
\n
$$
\frac{1}{\Gamma}I_{2}^{S} = \frac{1}{4}(1 - F_{L})(1 - \frac{4m_{\mu}^{2}}{q^{2}}) \sin^{2} \theta_{K}
$$
\n
$$
\frac{1}{\Gamma}I_{2}^{C} = -F_{L}(1 - \frac{4m_{\mu}^{2}}{q^{2}}) \cos^{2} \theta_{K}
$$
\n
$$
\frac{1}{\Gamma}I_{3} = \frac{1}{2}(1 - F_{L})A_{\text{T}}^{2}\left(1 - \frac{4m_{\mu}^{2}}{q^{2}}\right) \times \sin^{2} \theta_{K}
$$
\n
$$
\frac{1}{\Gamma}I_{6} = 2A_{\text{T}}^{Re}(1 - F_{L})\sqrt{(1 - \frac{4m_{\mu}^{2}}{q^{2}})} \times \sin^{2} \theta_{K}
$$
\n
$$
\frac{1}{\Gamma}I_{9} = \frac{1}{2}(1 - F_{L})A_{\text{T}}^{Im}\left(1 - \frac{4m_{\mu}^{2}}{q^{2}}\right) \times \sin^{2} \theta_{K}
$$

¹⁹⁰⁴ with the standard definitions for the parameters $F_{\rm L}$, $A_{\rm T}^2$ $A_{\rm T}^{Im}$ and $A_{\rm T}^{Re}$. At 1905 low- q^2 where these additional terms can be significant, if the amplitudes coming from QCD factorisation, with soft form-factors are used^{[3](#page-161-0)}, then I_1^S 1906 ¹⁹⁰⁷ and I_1^C can be simplified - without requiring extra parameters in the fit. 1908 Starting with the $\frac{1}{\Gamma} I_1^C$ term, one has:

$$
\frac{|A_t|^2 + 2\Re(A_0 \, L A_0^* \, R)}{\Gamma} = F_L \times \frac{|A_t|^2 + 2\Re(A_0 \, L A_0^* \, R)}{|A_0|^2} \tag{21}
$$

¹⁹⁰⁹ and using the expressions for the amplitudes in terms of the soft form-factors ¹⁹¹⁰ in Ref. [\[26\]](#page-206-0):

$$
\frac{|A_t|^2 + 2\Re(A_0 \, L A_0^* \, R)}{|A_0|^2} = 1 \quad . \tag{22}
$$

¹⁹¹¹ Thus:

³These assumption are assumed to hold to $\mathcal{O}(\Lambda/m_b) \sim 10\%$ for small values of q^2

$$
\frac{1}{\Gamma}I_1^C = F_L \times \left(1 + \frac{4m_\mu^2}{q^2}\right) \cos^2 \theta_K \quad . \tag{23}
$$

1 ¹⁹¹² $\frac{1}{\Gamma}I_1^S$ term is slightly more complicated:

$$
\frac{\Re(A_{\perp L}A_{\perp R}^* + A_{\parallel L}A_{\parallel R}^*)}{\Gamma} = (1 - F_{\text{L}}) \times \frac{\Re(A_{\perp L}A_{\perp R}^* + A_{\parallel L}A_{\parallel R}^*)}{|A_{\parallel}|^2 + |A_{\perp}|^2}
$$

$$
= \frac{1}{2}(1 - F_{\text{L}}) \times \left[1 - f(\mathcal{C}_7^{eff(1)}, \mathcal{C}_9^{eff(1)}, \mathcal{C}_{10}^{eff(1)})\right]
$$
(24)

¹⁹¹³ where:

$$
f(\mathcal{C}_7^{eff(l)}, \mathcal{C}_9^{eff(l)}, \mathcal{C}_{10}^{(l)}) = 2(|\mathcal{C}_{10}|^2 + |\mathcal{C}_{10}'|^2) / \left[\begin{array}{cc} |\mathcal{C}_9^{eff}|^2 + |\mathcal{C}_9^{eff}|^2 + |\mathcal{C}_{10}|^2 + |\mathcal{C}_{10}'|^2 + \\ 2\frac{m_b m_B}{q^2} \left(\mathcal{C}_9^{eff} \mathcal{C}_7^{eff*} + \mathcal{C}_9^{eff*} \mathcal{C}_7^{eff*} \right) + \\ 2\frac{m_b m_B}{q^2} \left(\mathcal{C}_9^{eff} \mathcal{C}_7^{eff*} + \mathcal{C}_9^{eff*} \mathcal{C}_7^{eff*} \right) + \\ 4\frac{m_b^2 m_B^2}{q^4} \left(|\mathcal{C}_7^{eff}|^2 + |\mathcal{C}_7^{eff}|^2 \right) \end{array} \right]
$$

¹⁹¹⁴ and then:

$$
\frac{1}{\Gamma}I_1^S = \frac{3}{4}(1 - F_{\rm L}) \times \left[1 + \frac{4m_{\mu}^2}{3q^2} - \frac{8m_{\mu}^2}{3q^2}f(\mathcal{C}_7^{eff(l)}, \mathcal{C}_9^{eff(l)}, \mathcal{C}_{10}^{(l)})\right]
$$

If $f(\mathcal{C}_7^{eff(1)})$ $\mathcal{C}^{eff(\prime)}_7, \mathcal{C}^{eff(\prime)}_9$ ¹⁹¹⁵ If $f(C_7^{eff(t)}, C_9^{eff(t)}, C_{10}^{(t)})$ is small, this simplifies to:

$$
\frac{1}{\Gamma}I_1^S \simeq \frac{3}{4}(1 - F_{\rm L}) \times \left[1 + \frac{4m_{\mu}^2}{3q^2}\right]
$$

¹⁹¹⁶ For this to be true:

$$
2 \frac{m_b m_B}{q^2} \left(C_9^{eff} C_7^{eff*} + C_9^{eff*} C_7^{eff} + C_9^{eff*} C_7^{eff*} + C_9^{eff*} C_7^{eff*} \right) +
$$

$$
4 \frac{m_b^2 m_B^2}{q^4} \left(|C_7^{eff}|^2 + |C_7^{eff}|^2 \right) + |C_9^{eff}|^2 + |C_9^{eff}|^2 \gg |C_{10}|^2 + |C_{10}'|^2
$$

1917

¹⁹¹⁸ which will tend to be true for $q^2 \leq 1$ where the contribution from $\mathcal{C}_7^{(\prime)}$ dominates, i.e. $4m_b^2m_B^2(|C_7|^2+|C_7'|^2)/q^4$ is large compared to $|C_{10}|^2$. $|C_7|^2+|C_7'|^2$ 1919 1920 is known to $\sim 10\%$ from $b \rightarrow s\gamma$.

Figure 68: Variation of the function $8m^2_\mu f(\mathcal{C}_7^{eff(0)})$ $\mathcal{C}^{eff(\prime)}_7, \mathcal{C}^{eff(\prime)}_9$ $\int_{9}^{eff(t)} C_{10}^{(t)} / 3q^2$ with q^2 .

Using the SM values for the Wilson coefficients and neglecting \mathcal{C}_7^{eff} $r_7^{eff'},\, \mathcal{C}_9^{eff'}$ 9 1921 and $\mathcal{C}_{10}^{eff'}$ with respect to \mathcal{C}_7^{eff} 1922 and $\mathcal{C}_{10}^{e f f'}$ with respect to $\mathcal{C}_7^{e f f}$, one can draw the variation of:

$$
\frac{8m_\mu^2}{3q^2}f(\mathcal{C}_7^{eff(\prime)},\mathcal{C}_9^{eff(\prime)},\mathcal{C}_{10}^{(\prime)})
$$

1923 as a function of q^2 . It is shown in Fig [68.](#page-163-0)

¹⁹²⁴ In summary, no additional parameters are introduced but kinematical 1925 factors, that depend on m_μ^2/q^2 , appear in front of the usual terms.

1926 E Threshold Terms

1927 E.1 Testing the correction procedure.

¹⁹²⁸ In order to test its validity, the correction procedure has been applied to a ¹⁹²⁹ large statistics MC sample. The events have been generated according to 1930 the SM predictions for the physics parameters of interest. The first q^2 bin, ¹⁹³¹ between 0.1 and $2 \text{ GeV}^2/c^4$ is divided into 19 sub-bins of width $0.1 \text{ GeV}^2/c^4$. ¹⁹³² In each of these bins, two fits are performed:

¹⁹³³ • the first fit neglecting the threshold terms completely;

¹⁹³⁴ • the second fit includes threshold terms.

1935 In both cases the q^2 variation over the bin is neglected. In the second case this amounts to treating x as a constant over the sub-bin. The impact of neglecting the threshold terms can be clearly seen in Fig [69,](#page-165-0) which shows the ¹⁹³⁸ angular distribution of simulated events with $0.1 < q^2 < 0.2 \,\text{GeV}^2/c^4$. The $\cos \theta_l$ distribution is only correctly described if the threshold terms are taken into account.

Figure 69: Fit of the angular distributions in simulation with $0.1 < q^2 <$ $0.2 \,\text{GeV}^2/c^4$ with a pdf without threshold terms (three top plots) and with threshold terms (three bottom plots). The $\cos \theta_l$ distribution is clearly not well fitted in the first case.

¹⁹⁴¹ The results of the fits for each observable in the 19 small bins, i.e. as a 1942 function of q^2 , are shown on Figs. [70](#page-169-0) and [71](#page-169-1) for the fits without and with ¹⁹⁴³ threshold terms respectively. As expected, the ratio of the two fit results 1944 approaches one as q^2 becomes large, Fig. [72.](#page-170-0)

In the MC, where the statistics is large, the true value of the physics parameters over the $0.1 < q^2 < 2 \text{ GeV}^2/c^4$ bin can be obtained by averaging the results of the fits to the 19 sub-bins, taking into account the threshold terms in the fits (the assumption here is that the q^2 variation over the subbins is negligible). The averages are calculated as follows:

$$
\langle F_L \rangle = \frac{\sum_{i=1}^{n \text{bins}} F_{L,i} N_i}{\sum_{i=1}^{n \text{bins}} N_i} \tag{25}
$$

$$
\langle A_T^2 \rangle = \frac{\sum_{i=1}^{nbins} A_{T,i}^2 N_i (1 - F_{L,i})}{\sum_{i=1}^{nbins} N_i (1 - F_{L,i})} \tag{26}
$$

$$
\langle A_T^{Im} \rangle = \frac{\sum_{i=1}^{nbins} A_{T,i}^{Im} N_i (1 - F_{L,i})}{\sum_{i=1}^{nbins} N_i (1 - F_{L,i})} \tag{27}
$$

$$
\langle A_T^{Re} \rangle = \frac{\sum_{i=1}^{n \text{bins}} A_{T,i}^{Re} N_i (1 - F_{L,i})}{\sum_{i=1}^{n \text{bins}} N_i (1 - F_{L,i})} \tag{28}
$$

¹⁹⁴⁵ and are listed in Table [48,](#page-167-0) third row.

¹⁹⁴⁶ The results of the fit to the whole $0.1 < q^2 < 2 \text{ GeV}^2/c^4$ bin without taking into account the threshold terms in the PDF are also shown: on the first row without applying the correction procedure and on the second row applying the correction procedure. The values in the second row of table [48](#page-167-0) are in general in good agreement with the reference values in the third row.

¹⁹⁵¹ The values of the corrections, evaluated with formulas [8](#page-104-0) and [9](#page-104-1) using the ¹⁹⁵² 400 k SM MC candidates with $0.1 < q^2 < 2 \,\text{GeV}^2/c^4$, are shown in table [47.](#page-167-1) 1953 Three different values of the parameter a of $F_L(q²)$, defined in eq. [7,](#page-104-2) have ¹⁹⁵⁴ been considered. The results for $a = 0.66$ and $a = 1.5$ are shown on tables [49](#page-167-2) ¹⁹⁵⁵ and [50](#page-168-0) respectively.

¹⁹⁵⁶ We can notice that assuming a linear behavior for A_T^{Re} allows to get a ¹⁹⁵⁷ correction which gives a more reliable result. The differences in the values ¹⁹⁵⁸ for A_T^2 are due to statistical fluctuations, which have a large impact here ¹⁹⁵⁹ since the generation value for A_T^2 is about zero. The same analysis for a non ¹⁹⁶⁰ SM MC, having a generation value for $A_T²$ different from zero, gives a good ¹⁹⁶¹ agreement also for the value of A_T^2 , as can be seen in Tables [52](#page-173-0) and [53.](#page-173-1)

	$a = 0.66$ $a = 1$ $a = 1.5$		
Correction on A_T^2	1.24	1.26	1.28
Correction on $err(A_T^2)$	1.22	1.24	1.26
Correction on A^{Re}_T	1.16	1.17	1.18
Correction on A_T^{Re} (linear approx)	1.08	1.08	1.09
Correction on $err(A_T^{Re})$	1.15	1.16	1.17

Table 47: Values of the corrections evaluated with formulas [8](#page-104-0) and [9](#page-104-1) using 400 k SM MC candidates in the range $(0.1 - 2) \text{ GeV}^2/c^4$. Three different values of the parameter a of $F_L(q²)$, defined in Eq. [7,](#page-104-2) have been considered.

Table 48: Results of the validation of the correction procedure on high statistics SM MC, assuming a=1

Table 49: Results of the validation of the correction procedure on high statistics SM MC, assuming a=0.66

Table 50: Results of the validation of the correction procedure on high statistics SM MC, assuming a=1.5

Figure 70: Results of the fits in small bins of $0.1 \,\text{GeV}^2/c^4$ width for the high statistics SM MC, not taking into account the threshold terms.

Figure 71: Results of the fits in small bins of $0.1 \,\text{GeV}^2/c^4$ width for the high statistics SM MC, taking into account the threshold terms.

Figure 72: Ratio of the results of the fits in small bins of $0.1 \text{ GeV}^2/c^4$ width taking into account the threshold terms over the results not taking into accountthem for the high statistics SM MC.

 In order to test the precision to which the correction factors can be determined, the high statistics MC sample has been divided in 1832 sam- $_{1964}$ ples, each containing 143 signal events as expected in 1 fb⁻¹ in the range ¹⁹⁶⁵ 0.1 $\lt q^2 < 2 \text{ GeV}^2/c^4$. The corrections have been evaluated for each of these toy samples and the results are shown in Fig. [73.](#page-172-0) The distributions of the corrections are fit with a Gaussian function, and the results are reported on Table [51](#page-171-0) for the mean and the sigma. We can see that the corrections are 1969 determined with an uncertainty lower than 1% .

Fit with no threshold terms $(a=1)$		
Parameter	m	
A_T^2	1.259	0.016
$err(A_T^2)$	1.240	0.014
A_T^{Re}	1.1662	0.0099
A^{Re}_{T} (linear approx)	1.0851	0.0043
$err(A_T^{Re})$	1.1583	0.0092

Table 51: Results of the Gaussian fit to the distributions of the corrections obtained from 1832 MC toys based on SM MC. Each toy has a statistic corresponding 143 signal events as expected in 1 fb^{-1} in the range $0.1 < q^2 <$ $2 \,\text{GeV}^2/c^4$.

Figure 73: Distributions of the corrections obtained from 1832 MC toys based on SM MC. Each toy has a statistic corresponding 143 signal candidates as expected in 1 fb^{-1} of data. The distribution is fitted with a Gaussian function.

	$a = 0.66$ $a = 1$ $a = 1.5$		
Correction on A_T^2	1.23	1.24	1.26
Correction on $err(A_T^2)$	1.21	1.22	1.24
Correction on A^{Re}_T	1.15	1.16	1.17
Correction on A_T^{Re} (linear approx)	1.07	1.08	1.09
Correction on $err(A_T^{Re})$	1.14	1.15	1.16

Table 52: Values of the corrections evaluated with formulas [8](#page-104-0) and [9](#page-104-1) using 70 k events of non SM MC in the range $0.1 < q^2 < 2 \text{ GeV}^2/c^4$. Three different values of the parameter a of $F_L(q²)$, defined in eq. [7,](#page-104-2) have been considered.

Table 53: Results of the validation of the correction procedure on high statistics non-SM MC, assuming a=1

1970 E.2 Cross-checking the assumption on the dependence $_{^{1971}}$ of F_L from q^2 .

As a cross-check we also computed the correction assuming a linear behavior for F_L , i.e. using the following expression instead of that in equation [7:](#page-104-2)

$$
F_L(q_i^2) = bq_i^2 \tag{29}
$$

¹⁹⁷² Table [54](#page-174-0) shows the size of the corresponding correction factors for the three 1973 value of b. The measured value of b on data, shown on figure [74,](#page-174-1) is $b =$ 1974 0.29 \pm 0.08.

			$b = 0.21$ $b = 0.29$ $b = 0.37$
Correction on A_T^2 , S_3 , A_T^{Im} , A_{Im}	1.18	1.21	1.24
Correction on $err(A_T^2)$, $err(S_3)$, $err(A_T^{Im})$, $err(A_{Im})$	1.17	1.19	1.22
Correction on A_T^{Re} , A_{FB}	1.12	1.13	1.15
Correction on A_T^{Re} , A_{FB} (linear approx)	1.06	1.07	0.09
Correction on $err(A_T^{Re})$, $err(A_{FB})$	1 1 1	1.13	1.15

Table 54: Values of the corrections evaluated with Eq. [15](#page-105-0) and [16](#page-105-1) using 254 events of data in the range $0.1 < q^2 < 2 \,\text{GeV}^2/c^4$, assuming linear behavior for F_L as in Eq. [29.](#page-173-2) Three different values of the parameter b of $F_L(q^2)$, defined in Eq. [29,](#page-173-2) have been considered.

Figure 74: The curve represent the values of $\langle F_L \rangle$ as function of b as calculated on data assuming linear behavior for F_L as in equation [29.](#page-173-2) The horizontal lines represent the measured value of F_L and its error. The intersection with the curve gives the measurement of $b = 0.29 \pm 0.08$.

1975 F S-wave extraction

1976 F.1 Validation of the S-wave extraction with $B^0 \rightarrow$ 1977 $K^{*0}J\!/\!\psi$

 1978 To determine the S-wave parameters in data, we perform a simultaneous fit 1979 in the two mass regions: above and below the K^{*0} mass.

¹⁹⁸⁰ The signal is described by the angular Pdf including the extra terms due 1981 to the S-wave, as discussed in Sec. [16,](#page-97-0) while the B^0 -mass Pdf is identical to ¹⁹⁸² the one used in the main fit. In the simultaneous fit all parameters of the two 1983 Pdfs, apart for the value of A_s^+ and A_s^- and the signal fraction, are shared. ¹⁹⁸⁴ While in the main fit the S-wave parameters are fixed to zero, in this more $_{1985}$ complex fit an iterative procedure is used. The fit is performed as follow: $F_{\rm S}$ is first fixed to 0, while A_S^+ $\frac{+}{S}$ and A_{S}^- ¹⁹⁸⁶ is first fixed to 0, while A_S^+ and A_S^- are free to float. After the first fit, F_S is ¹⁹⁸⁷ computed using Eq. [4](#page-100-0) and fixed to this new value. A second fit is performed to determine again A_S^+ $\frac{+}{S}$ and A_{S}^- ¹⁹⁸⁸ to determine again A_S^+ and A_S^- , so a new value of F_S is obtained. We found 1989 that F_S varies slightly between the two fits, so there is no need to iterate ¹⁹⁹⁰ again. This procedure assumes implicitly that the acceptance corrections 1991 calculated for the full sample can be used for both the $K\pi$ mass regions, 1992 i.e. that the acceptance has a small dependence on the $K\pi$ -mass, which is ¹⁹⁹³ reasonable to expect.

1994 The iterative fit to extract the S-wave has been validated on $B^0 \to K^{*0} J/\psi$ ¹⁹⁹⁵ events. The results are shown in Table [55.](#page-175-0) After the second iteration, the ¹⁹⁹⁶ F_S value is found to be 0.0835 ± 0.0024 , consistent with expectations. The value obtained using A_s^+ ^+_S and A^-_S ¹⁹⁹⁷ value obtained using A_S^+ and A_S^- from the first iteration was $F_S = 0.0838$, 1998 which shows how quickly this procedure converges for the $B^0 \to K^{*0} J/\psi$.

1999 The projection of the four fitted quantities for the two $K\pi$ mass regions ²⁰⁰⁰ are shown on Figures [75](#page-176-0) and [76.](#page-177-0)

Observable	Fit result
A^{Re}_T	0.010 ± 0.007
F_L	0.567 ± 0.002
A_T^2	0.050 ± 0.017
$\bar{A_T^{Im}}$	-0.390 ± 0.017
A_{S}^{+}	-0.054 ± 0.004
	-0.288 ± 0.004

Table 55: Fit results on $B^0 \to J/\psi K^{*0}$ including the S-wave and exploiting the phase information.

Figure 75: 1D projections of the four fitted quantities for the $B^0 \to J/\psi~K^{*0}$ dataset with $M(K\pi) < M(K^{*0})$. The fitted pdf (blue), the background only pdf (green) are overlaid.

Figure 76: 1D projections of the four fitted quantities for the $B^0 \to J/\psi K^{*0}$ dataset with $M(K\pi) > M(K^{*0})$. The fitted pdf (blue), the background only pdf (green) are overlaid.

 $_{2001}$ For comparison, a simple fit with $A_{\rm S}$ and $F_{\rm S}$ as free parameters is per-²⁰⁰² formed on $B^0 \to K^{*0} J/\psi$ events. The results are shown in Table [56.](#page-177-1) The A_S value can be compared with the mean of A_S^+ $\frac{+}{S}$ and A_{S}^- ²⁰⁰³ value can be compared with the mean of A_S^+ and A_S^- from Table [55.](#page-175-0) The fit ²⁰⁰⁴ results are compatible with the ones of Table [55](#page-175-0) but the method exploiting ²⁰⁰⁵ the phase change gives an error on F_S smaller by a factor \sim 3.

Observable	Fit result
A^{Re}_{T}	0.010 ± 0.007
F_L	0.566 ± 0.003
A_T^2	0.052 ± 0.017
$A_T^{\bar{I}m}$	-0.382 ± 0.017
F_S	0.0771 ± 0.0062
A_S	-0.169 ± 0.003

Table 56: Fit results on $B^0 \to J/\psi K^{*0}$ including the S-wave, fitting directly F_S and A_S .

2006 We have also tested the method to extract the S-wave splitting the $B^0 \rightarrow$ ²⁰⁰⁷ J/ψ K^{*0} dataset in 152 files of 1000 events. The value obtained for F_S and ²⁰⁰⁸ its error after the second fit are shown on Figure [77](#page-178-0) and [78,](#page-178-1) it demonstrates ²⁰⁰⁹ that this method gives reliable results on small samples.

Figure 77: F_S values obtained from fits on $B⁰ \to J/\psi K^{*0}$ data samples of 1000 events.

Figure 78: F_S errors obtained from fits on $B^0 \to J/\psi K^{*0}$ data samples of 1000 events.

2010 Using the $B^0 \to K^{*0} J/\psi$ events, it was also checked how the calculated ²⁰¹¹ values of F_S depends on the assumptions: the S-wave was parametrised as ²⁰¹² varying by $\pm 20\%$ over $\pm 100 \,\text{MeV}/c^2$ instead of being taken as constant. The ²⁰¹³ Breit Wigner was parametrised as a P-wave relativistic Breit Wigner instead ²⁰¹⁴ of the simple BW and central value and sigma of the BW were varied within ²⁰¹⁵ their errors, resulting among others from different background subtraction . ²⁰¹⁶ All these variations resulted in $\langle F_S \rangle$ variations by less than 10%. This 10%

²⁰¹⁷ is much smaller than the statistical error on F_s obtained with $B^0 \to K^{*0} \mu^+ \mu^-$ ²⁰¹⁸ events.

2019 F.2 Fit distribution for the extraction of a K^+ π^- sys- $\begin{array}{lll} \hbox{ $t\rm e m$} & S\hbox{-wave in } B^0\hbox{\rightarrow} K^{\ast 0}\mu\mu \end{array}$

Figure 79: 1D projections of the four fitted quantities for the $B^0 \to K^{*0} \mu\mu$ dataset with $M(K\pi) < M(K^{*0})$ in the q^2 region from 1 to 19 GeV²/ c^4 . The fitted pdf (blue), the background only pdf (green) are overlaid.

Figure 80: 1D projections of the four fitted quantities for the $B^0 \to K^{*0} \mu\mu$ dataset with $M(K\pi) > M(K^{*0})$ in the q^2 region from 1 to 19 GeV²/ c^4 . The fitted pdf (blue), the background only pdf (green) are overlaid.

Figure 81: 1D projections of the four fitted quantities for the $B^0 \to K^{*0} \mu\mu$ dataset with $M(K\pi) < M(K^{*0})$ in the q^2 region from 1 to 6 GeV²/ c^4 . The fitted pdf (blue), the background only pdf (green) are overlaid.

Figure 82: 1D projections of the four fitted quantities for the $B^0 \to K^{*0} \mu\mu$ dataset with $M(K\pi) > M(K^{*0})$ in the q^2 region from 1 to 6 GeV²/ c^4 . The fitted pdf (blue), the background only pdf (green) are overlaid.

G Profile Likelihood

G.1 Profile-likelihoods

- The 1D likelihood scans can be found at [this location](http://www.hep.ph.ic.ac.uk/~cp309/FCandMINOS_Results/L1/)
- (http://www.hep.ph.ic.ac.uk/~cp309/FCandMINOS_Results/L1/)
- The 2D likelihood scans are shown in Figs. [83](#page-184-0)[-89.](#page-190-0)

Figure 83: Two dimensional log-likelihood scans for F_{L} , A_{FB} , §3 and §9 in the $0.1 < q^2 < 2 \text{ GeV}^2/c^4 q^2$ -bin.

Figure 84: Two dimensional log-likelihood scans for F_{L} , A_{FB} , §3 and §9 in the $2 < q^2 < 4.3 \text{ GeV}^2/c^4 q^2$ -bin.

Figure 85: Two dimensional log-likelihood scans for F_{L} , A_{FB} , §3 and §9 in the $4.3 < q^2 < 8.68 \,\text{GeV}^2/c^4 \, q^2$ -bin.

Figure 86: Two dimensional log-likelihood scans for F_{L} , A_{FB} , §3 and §9 in the $10.09 < q^2 < 12.86 \,\text{GeV}^2/c^4 \, q^2$ -bin.

Figure 87: Two dimensional log-likelihood scans for F_{L} , A_{FB} , §3 and §9 in the $14.18 < q^2 < 16 \,\text{GeV}^2/c^4$ q^2 -bin.

Figure 88: Two dimensional log-likelihood scans for F_{L} , A_{FB} , §3 and §9 in the $16 < q^2 < 19 \,\text{GeV}^2/c^4$ q^2 -bin.

Figure 89: Two dimensional log-likelihood scans for F_{L} , A_{FB} , §3 and §9 in the $1 < q^2 < 6 \text{ GeV}^2/c^4 q^2$ -bin.

2026 H Systematic variations when re-fitting

 In addition to the toy-based method detailed in section [18](#page-107-0) of this note, an al- ternative procedure for estimating the systematic uncertainties is performed. The following systematic uncertainties are extracted as follows. The stan- dard angular fit is performed on candidates from the data with the nominal acceptance correction applied. The fit is then repeated with a systematically varied acceptance correction applied. The difference in the result of the two fits is taken as an estimate of the systematic uncertainty.

Table 57: Variation of A_{FB} when systematically varying fit parameters or the weights applied to the input data set. AFB when systematically varying fit parameters or the weights applied to the input data set. Table 57: Variation of

Table 58: Variation of F_L when systematically varying fit parameters or the weights applied to the input data set. $F_{\rm L}$ when systematically varying fit parameters or the weights applied to the input data set. Table 58: Variation of

Table 59: Variation of S₃ when systematically varying fit parameters or the weights applied to the input data set. S3 when systematically varying fit parameters or the weights applied to the input data set. Table 59: Variation of

Table 60: Variation of S_9 when systematically varying fit parameters or the weights applied to the input data set. S_9 when systematically varying fit parameters or the weights applied to the input data set. Table 60: Variation of

Table 61: Variation of A₉ when systematically varying fit parameters or the weights applied to the input data set. A9 when systematically varying fit parameters or the weights applied to the input data set. Table 61: Variation of

Table 62: Variation of $A_{\mathsf{T}}^{\mathsf{Re}}$ $\frac{1}{T}$ when systematically varying fit parameters or the weights applied to the input data set.

Table 63: Variation of F_L when systematically varying fit parameters or the weights applied to the input data set. $F_{\rm L}$ when systematically varying fit parameters or the weights applied to the input data set. Table 63: Variation of

Table 64: Variation of र्नु $\frac{2}{1}$ when systematically varying fit parameters or the weights applied to the input data set.

Table 65: Variation of A_{Γ}^{In} T^m when systematically varying fit parameters or the weights applied to the input data set.

₂₀₃₄ I Weight scaling scheme

In the acceptance correction procedure, each candidate is re-weighted according to the inverse of the efficiency. As the total efficiency of each candidate is on the order of 0.5% , the weight given to each candidate is on the order of 200. In the analysis, the weights are renormalised according to

$$
\alpha = \frac{N}{\sum_{i=1}^{N} w_i},\tag{30}
$$

where N is the number of candidates in the sample, and w_i is the weight of each candidate. This ensures that the sum-of-weights of the candidates is equal to the number of candidates in the sample. An alternative approach would be to scale the weights according to

$$
\alpha = \frac{\sum_{i=1}^{N} w_i}{\sum_{i=1}^{N} (w_i)^2}.
$$
\n(31)

 To compare the two weighting schemes, 1D likelihood scans are produced for each obervable using each of the weighting schemes, see Figs. [90](#page-202-0) and [91.](#page-203-0) These distributions indicate that the weighting scheme given in Eq. [31](#page-201-0) gives larger confidence intervals for each observable than that used in the analysis (Eq. [30\)](#page-201-1), which are more similar to the intervals obtained from the FC procedure in Sec. [15.1.1.](#page-76-0) The same behaviour is observed in each of the $_{2041}$ q^2 bins.

Figure 90: Comparison of likelihood scans for the observables (a) A^{Re}_T , (b) $F_{\rm L}$, (c) $A_{\rm T}^2$ and (d) $A_{\rm T}^{Im}$ in the 0.10 < $q^22.00$ < GeV²/ c^4 region, if the weight of candidates from the data is renormalised according to Eq. [30](#page-201-1) (blue histogram) and Eq. [31](#page-201-0) (red histogram).

Figure 91: Comparison of likelihood scans for the observables (a) A^{Re}_T , (b) $F_{\rm L}$, (c) $A_{\rm T}^2$ and (d) $A_{\rm T}^{Im}$ in the 14.18 $\langle q^2 16.00 \rangle \langle {\rm GeV}^2/c^4$ region, if the weight of candidates from the data is renormalised according to Eq. [30](#page-201-1) (blue histogram) and Eq. [31](#page-201-0) (red histogram).

References

- [1] M. Williams, How good are your fits? Unbinned multivariate goodness-of-fit tests in high energy physics, JINST 5 [\(2010\) P09004,](http://dx.doi.org/10.1088/1748-0221/5/09/P09004) [arXiv:1006.3019](http://arxiv.org/abs/1006.3019).
- ₂₀₄₆ [2] LHCb collaboration, T. Blake *et al.*, Analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ at LHCb, [LHCb-ANA-2011-077.](http://cdsweb.cern.ch/search?p=LHCb-ANA-2011-077&f=reportnumber&action_search=Search&c=LHCb+Internal+Notes&c=LHCb+Analysis+Notes)
- ₂₀₄₈ [3] LHCb collaboration, Angular analysis of $B^0 \to K^{*0} \mu^+ \mu^-$, [LHCb-](http://cdsweb.cern.ch/search?p={LHCb-CONF-2011-038}&f=reportnumber&action_search=Search&c=LHCb+Reports&c=LHCb+Conference+Proceedings&c=LHCb+Conference+Contributions&c=LHCb+Notes&c=LHCb+Theses&c=LHCb+Papers)[CONF-2011-038.](http://cdsweb.cern.ch/search?p={LHCb-CONF-2011-038}&f=reportnumber&action_search=Search&c=LHCb+Reports&c=LHCb+Conference+Proceedings&c=LHCb+Conference+Contributions&c=LHCb+Notes&c=LHCb+Theses&c=LHCb+Papers)
- [4] BaBar Collaboration, B. Aubert et al., Angular distributions in the de- $_{2051}$ arys $B \to K^* \ell^+ \ell^-$, Phys. Rev. D79 [\(2009\) 031102,](http://dx.doi.org/10.1103/PhysRevD.79.031102) [arXiv:0804.4412](http://arxiv.org/abs/0804.4412).
- [5] Belle Collaboration, J.-T. Wei et al., Measurement of the differential $\emph{branching fraction and forward-backward asymmetry for $B\rightarrow K^{(*)}\ell^+\ell^-$,}$ [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.103.171801) 103 (2009) 171801, [arXiv:0904.0770](http://arxiv.org/abs/0904.0770).
- [6] CDF collaboration, T. Aaltonen et al., Observation of the Baryonic ²⁰⁵⁶ Flavor-Changing Neutral Current Decay $\Lambda_b \to \Lambda \mu^+ \mu^-$, Phys. Rev. Lett. 107 (2011) 201802, [arXiv:1107.3753](http://arxiv.org/abs/1107.3753), 8 pages, 2 figures, 4 tables. Sub-mitted to Phys. Rev. Lett.
- [7] CDF collaboration, T. Aaltonen et al., Measurements of the Angular ²⁰⁶⁰ Distributions in the Decays $B \to K^{(*)} \mu^+ \mu^-$ at CDF, [Phys. Rev. Lett.](http://dx.doi.org/10.1103/PhysRevLett.108.081807) 108 [\(2012\) 081807,](http://dx.doi.org/10.1103/PhysRevLett.108.081807) [arXiv:1108.0695](http://arxiv.org/abs/1108.0695), 7 pages, 3 figures, 3 tables. Sub-mitted to Phys. Rev. Lett.
- [8] LHCb collaboration, Differential branching fraction and angular analy-²⁰⁶⁴ sis of the $B^0 \to K^{*0} \mu^+ \mu^-$ decay, [LHCb-CONF-2012-008.](http://cdsweb.cern.ch/search?p={LHCb-CONF-2012-008}&f=reportnumber&action_search=Search&c=LHCb+Reports&c=LHCb+Conference+Proceedings&c=LHCb+Conference+Contributions&c=LHCb+Notes&c=LHCb+Theses&c=LHCb+Papers)
- 2065 [9] C. Bobeth, G. Hiller, D. van Dyk, and C. Wacker, The Decay $B \rightarrow$ ²⁰⁶⁶ $K\ell^+\ell^-$ at Low Hadronic Recoil and Model-Independent $\Delta B = 1$ Con-straints, [arXiv:arXiv/1111.2558](http://arxiv.org/abs/arXiv/1111.2558).
- [10] U. Egede, T. Hurth, J. Matias, M. Ramon, and W. Reece, New ob-²⁰⁶⁹ servables in the decay mode $\bar{B}_d \to \bar{K}^{*0}\ell^+\ell^-$, JHEP **0811** [\(2008\) 032,](http://dx.doi.org/10.1088/1126-6708/2008/11/032) [arXiv:0807.2589](http://arxiv.org/abs/0807.2589).
- ²⁰⁷¹ [11] W. Altmannshofer *et al.*, *Symmetries and Asymmetries of B* \rightarrow $K^*\mu^+\mu^-$ Decays in the Standard Model and Beyond, JHEP 0901 [\(2009\) 019,](http://dx.doi.org/10.1088/1126-6708/2009/01/019) [arXiv:0811.1214](http://arxiv.org/abs/0811.1214).

₂₀₇₄ [12] D. Becirevic and E. Schneider, On transverse asymmetries in B \rightarrow 2075 $K^*\ell^+\ell^-$, [Nucl. Phys.](http://dx.doi.org/10.1016/j.nuclphysb.2011.09.004) **B854** (2012) 321, [arXiv:1106.3283](http://arxiv.org/abs/1106.3283).

²⁰⁷⁶ [13] T. Blake *et al., Angular analysis of* $B^0 \to K^{*0} \mu^+ \mu^-$ at LHCb with 1 ²⁰⁷⁷ fb^{-1} , [LHCb-ANA-2011-089.](http://cdsweb.cern.ch/search?p=LHCb-ANA-2011-089&f=reportnumber&action_search=Search&c=LHCb+Internal+Notes&c=LHCb+Analysis+Notes)

- ₂₀₇₈ [14] LHCb collaboration, T. Blake *et al.*, Analysis of $B^0 \to K^{*0} \mu^+ \mu^-$ at 2079 LHCb, [LHCb-ANA-2011-022.](http://cdsweb.cern.ch/search?p=LHCb-ANA-2011-022&f=reportnumber&action_search=Search&c=LHCb+Internal+Notes&c=LHCb+Analysis+Notes)
- $_{2080}$ [15] J. Dickens, V. Gibson, C. Lazzeroni, and M. Patel, A Study of the Sensi $tivity to the Forward-Backward Asymmetry in B_d \rightarrow K^*\mu^+mu^-$ Decays ²⁰⁸² at LHCb, Tech. Rep. LHCb-2007-039. CERN-LHCb-2007-039, CERN, ²⁰⁸³ Geneva, Jul, 2007.
- ²⁰⁸⁴ [16] T. Skwarnicki, A study of the radiative cascade transitions between the ²⁰⁸⁵ Upsilon-prime and Upsilon resonances, PhD thesis, Institute of Nuclear ²⁰⁸⁶ Physics, Krakow, 1986, DESY-F31-86-02.
- ²⁰⁸⁷ [\[](http://cdsweb.cern.ch/search?p={LHCb-CONF-2011-025}&f=reportnumber&action_search=Search&c=LHCb+Reports&c=LHCb+Conference+Proceedings&c=LHCb+Conference+Contributions&c=LHCb+Notes&c=LHCb+Theses&c=LHCb+Papers)17] LHCb collaboration, Evidence for the decay $B_s^0 \rightarrow J/\psi \overline{K}^{*0}$, [LHCb-](http://cdsweb.cern.ch/search?p={LHCb-CONF-2011-025}&f=reportnumber&action_search=Search&c=LHCb+Reports&c=LHCb+Conference+Proceedings&c=LHCb+Conference+Contributions&c=LHCb+Notes&c=LHCb+Theses&c=LHCb+Papers)²⁰⁸⁸ [CONF-2011-025.](http://cdsweb.cern.ch/search?p={LHCb-CONF-2011-025}&f=reportnumber&action_search=Search&c=LHCb+Reports&c=LHCb+Conference+Proceedings&c=LHCb+Conference+Contributions&c=LHCb+Notes&c=LHCb+Theses&c=LHCb+Papers)
- ²⁰⁸⁹ [18] M. Pivk and F. R. Le Diberder, sPlot: a statistical tool to un-²⁰⁹⁰ fold data distributions, [Nucl. Instrum. Meth.](http://dx.doi.org/10.1016/j.nima.2005.08.106) A555 (2005) 356, ²⁰⁹¹ [arXiv:physics/0402083](http://arxiv.org/abs/physics/0402083).
- ²⁰⁹² [19] C. Bobeth, G. Hiller, and D. van Dyk, More Benefits of Semileptonic ²⁰⁹³ Rare B Decays at Low Recoil: CP Violation, JHEP 1107 [\(2011\) 067,](http://dx.doi.org/10.1007/JHEP07(2011)067) ²⁰⁹⁴ [arXiv:1105.0376](http://arxiv.org/abs/1105.0376).
- [20] M. Needham et al., Flavor-untagged angular analysis of $B_d^0 \rightarrow J/\psi K^*$ 2095 $_{2096}$ and $B_s^0 \rightarrow J/\psi \phi$ decays, Tech. Rep. LHCb-ANA-2011-002, CERN, ²⁰⁹⁷ Geneva, May, 2011.
- ²⁰⁹⁸ [21] B. Aubert *et al., Measurement of decay amplitudes of B* \rightarrow $J/\psi K^*$, ²⁰⁹⁹ $\psi(2S)K^*$, and $\chi_{c1}K^*$ with an angular analysis, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevD.76.031102) D76 (2007) ²¹⁰⁰ [031102,](http://dx.doi.org/10.1103/PhysRevD.76.031102) [arXiv:0704.0522](http://arxiv.org/abs/0704.0522).
- 2101 [22] H.-Y. Cheng, Y.-Y. Keum, and K.-C. Yang, $B \to J/\psi K^*$ decays in QCD ²¹⁰² factorization, Phys. Rev. D65 [\(2002\) 094023,](http://dx.doi.org/10.1103/PhysRevD.65.094023) [arXiv:hep-ph/0111094](http://arxiv.org/abs/hep-ph/0111094).
- ²¹⁰³ [23] G. J. Feldman and R. D. Cousins, A Unified Approach to the Classi-²¹⁰⁴ cal Statistical Analysis of Small Signals, Phys. Rev. D57 [\(1998\) 3873,](http://dx.doi.org/10.1103/PhysRevD.57.3873) ²¹⁰⁵ [arXiv:physics/9711021](http://arxiv.org/abs/physics/9711021).
- ²¹⁰⁶ [24] C.-D. Lu and W. Wang, Analysis of $B \to K_J^*(\to K\pi)\mu^+\mu^-$ in the higher ²¹⁰⁷ kaon resonance region, [arXiv:1111.1513](http://arxiv.org/abs/1111.1513), * Temporary entry *.
- 2108 [25] C. Bobeth, G. Hiller, and G. Piranishvili, CP Asymmetries in $\bar{B} \rightarrow$ ²¹⁰⁹ $\bar{K}^* (\to \bar{K}\pi) \bar{\ell} \ell$ and Untagged \bar{B}_s , $B_s \to \phi (\to K^+K^-) \bar{\ell} \ell$ Decays at NLO, ²¹¹⁰ JHEP 0807 [\(2008\) 106,](http://dx.doi.org/10.1088/1126-6708/2008/07/106) [arXiv:0805.2525](http://arxiv.org/abs/0805.2525).
- ²¹¹¹ [26] F. Kruger and J. Matias, Probing new physics via the transverse am-₂₁₁₂ plitudes of $B^0 \to K^{*0}(\to K^-\pi^+)\ell^+\ell^-$ at large recoil, [Phys. Rev.](http://dx.doi.org/10.1103/PhysRevD.71.094009) D71 ²¹¹³ [\(2005\) 094009,](http://dx.doi.org/10.1103/PhysRevD.71.094009) [arXiv:hep-ph/0502060](http://arxiv.org/abs/hep-ph/0502060), 21 pages, 16 figures. Minor typo ²¹¹⁴ in Eq. (4.8) corrected: version to appear in Phys. Rev. D Report-no: ²¹¹⁵ UAB-FT 560.

2116 Ω