Major folder renaming.

This commit is contained in:
Karthik 2024-06-18 19:04:34 +02:00
parent 383ebd2612
commit f23f5e32b2
2 changed files with 922 additions and 0 deletions

View File

@ -0,0 +1,740 @@
Term J Prefix Level (cm-1) Suffix
"5I" "8" "" "0.000" ""
"5I" "7" "" "4134.222" ""
"5I" "6" "" "7050.603" ""
"5I" "5" "" "9211.591" ""
"5I" "4" "" "10925.277" ""
"7H*" "2" "" "" ""
"7H*" "8" "" "7565.610" ""
"7H*" "7" "" "8519.210" ""
"7H*" "6" "" "10088.802" ""
"7H*" "5" "" "12298.551" ""
"7H*" "4" "" "13952.001" ""
"7H*" "3" "" "15254.936" ""
"7I*" "3" "" "" ""
"7I*" "4" "" "" ""
"7I*" "9" "" "9990.974" ""
"7I*" "8" "" "12007.121" ""
"7I*" "7" "" "14367.806" ""
"7I*" "6" "" "14970.701" ""
"7I*" "5" "" "16684.731" ""
"7F*" "6" "" "11673.49" ""
"7G*" "7" "" "12655.13" ""
"7K*" "4" "" "" ""
"7K*" "5" "" "" ""
"7K*" "10" "" "12892.76" ""
"7K*" "8" "" "16288.73" ""
"7K*" "9" "" "16717.79" ""
"7K*" "7" "" "17687.90" ""
"7K*" "6" "" "19182.66" ""
"5K*" "9" "" "13495.932" ""
"5K*" "8" "" "19688.595" ""
"5K*" "7" "" "21783.407" ""
"5K*" "6" "" "23464.019" ""
"5K*" "5" "" "24881.867" ""
"7F*" "5" "" "14153.49" ""
"5I*" "8" "" "14625.64" ""
"5I*" "7" "" "18339.80" "o"
"5I*" "6" "" "20554.73" ""
"5I*" "5" "" "22294.88" ""
"5I*" "4" "" "23686.81" ""
"5H*" "7" "" "15194.83" ""
"(8,0)*" "8" "" "15567.38" ""
"*" "6" "" "15862.64" ""
"(8,1)*" "9" "" "15972.35" ""
"(8,1)*" "7" "" "16693.87" ""
"(8,1)*" "8" "" "16733.20" ""
"7P*" "4" "" "16069.98" ""
"*" "4" "" "16412.80" ""
"*" "6" "" "16591.38" ""
"*" "5" "" "17502.89" ""
"(8,2)*" "10" "" "17513.33" ""
"(8,2)*" "9" "" "17727.15" ""
"(8,2)*" "8" "" "18021.89" ""
"(8,2)*" "7" "" "18433.76" "o"
"(8,2)*" "6" "" "18711.93" ""
"3[8]" "9" "" "17514.50" ""
"3[8]" "8" "" "18903.21" ""
"3[8]" "7" "" "21074.20" "o"
"3[7]" "8" "" "17613.36" ""
"3[7]" "7" "" "18937.78" ""
"3[7]" "6" "" "21159.79" ""
"5F*" "5" "" "17804.24" ""
"3[6]" "5" "" "" ""
"3[6]" "6" "" "" ""
"3[6]" "7" "" "18094.52" ""
"*" "6" "" "18172.87" ""
"3[9]" "10" "" "18462.65" ""
"3[9]" "9" "" "19240.82" ""
"3[9]" "8" "" "20193.60" ""
"9G*" "8" "" "18472.71" ""
"*" "7" "" "18528.55" ""
"*" "6" "" "18561.20" ""
"*" "7" "" "18857.04" ""
"3K2" "8" "" "19019.15" ""
"7H*" "8" "" "19092.30" ""
"*" "6" "" "19304.26" ""
"3[10]" "11" "" "19348.72" ""
"3[10]" "10" "" "19797.96" ""
"3[10]" "9" "" "20209.00" ""
"*" "5" "" "19480.87" ""
"*" "9" "" "19557.83" ""
"*" "10" "" "19797.96" ""
"*" "5" "" "19813.98" ""
"*" "6" "" "19856.88" ""
"(7,0)*" "7" "" "19907.51" ""
"(7,1)*" "8" "" "20341.32" ""
"(7,1)*" "7" "" "20766.29" ""
"(7,1)*" "6" "" "20817.61" ""
"*" "4" "" "20430.11" ""
"9K*" "11" "" "20448.44" ""
"*" "4" "" "20474.99" ""
"7G*" "7" "" "20485.40" ""
"(15/2,1/2)" "7" "" "20614.32" "o"
"(15/2,1/2)" "8" "" "20789.85" ""
"*" "8" "" "20884.87" ""
"*" "5" "" "20891.64" ""
"*" "5" "" "20921.55" ""
"*" "7" "" "20954.18" ""
"*" "6" "" "21392.40" ""
"*" "9" "" "21540.68" ""
"3[7]" "8" "" "21603.04" ""
"5H*" "7" "" "21675.28" ""
"5H*" "6" "" "24040.59" ""
"5H*" "4" "" "26440.41" ""
"5H*" "3" "" "27601.33" ""
"3[6]" "7" "" "21778.43" ""
"*" "10" "" "21788.93" ""
"(7,2)*" "9" "" "21838.55" ""
"(7,2)*" "8" "" "21899.22" ""
"(7,2)*" "7" "" "22061.29" ""
"(7,2)*" "6" "" "22286.87" ""
"(7,2)*" "5" "" "22524.21" ""
"1[9]" "9" "" "22045.79" ""
"*" "4" "" "22099.06" ""
"1[10]" "10" "" "22487.14" ""
"9L*" "8" "" "" ""
"9L*" "6" "" "" ""
"9L*" "12" "" "22541.18" ""
"9L*" "11" "" "23677.38" ""
"9L*" "10" "" "24858.74" ""
"9L*" "9" "" "25955.10" ""
"9L*" "7" "" "27556.34" ""
"5G*" "6" "" "22633.23" ""
"*" "7" "" "22647.94" ""
"*" "4" "" "22696.82" ""
"*" "8" "" "22767.83" ""
"*" "4" "" "22938.03" ""
"(6,0)*" "6" "" "22956.84" ""
"(8,0)?" "8" "" "23031.46" ""
"" "9" "" "23218.59" ""
"*" "9" "" "23271.74" ""
"" "8" "" "23280.46" ""
"" "6" "" "23333.92" ""
"*" "7" "" "23340.12" ""
"*" "6" "" "23359.82" ""
"" "7" "" "23360.66" ""
"" "8" "" "23388.95" ""
"*" "5" "" "23440.46" ""
"(6,1)*" "7" "" "23479.77" ""
"(6,1)*" "5" "" "23552.65" ""
"(6,1)*" "6" "" "23687.87" ""
"*" "6" "" "23529.01" ""
"(15/2,3/2)" "6" "" "" ""
"(15/2,3/2)" "8" "" "23534.50" ""
"(15/2,3/2)" "7" "" "23591.27" ""
"(15/2,3/2)" "9" "" "23780.26" ""
"3[8]" "7" "" "23655.36" ""
"" "6" "" "23683.87" ""
"(8,1)*" "9" "" "23736.610" ""
"(8,1)*" "8" "" "23877.739" ""
"(8,1)*" "7" "" "24708.971" ""
"" "7" "" "23799.41" ""
"5H*" "3" "" "23824.68" ""
"*" "8" "" "23832.060" ""
"" "9" "" "23841.90" ""
"*" "10" "" "23953.30" ""
"" "7" "" "23972.34" ""
"" "6" "" "24062.88" ""
"*" "8" "" "24204.19" ""
"*" "9" "" "24229.22" ""
"" "6" "" "24302.02" ""
"*" "7" "" "24353.58" ""
"" "7" "" "24430.27" ""
"*" "5" "" "24634.07" ""
"*" "3" "" "24668.59" ""
"(6,2)*" "4" "" "24841.04" ""
"(6,2)*" "7" "" "24906.86" ""
"(6,2)*" "6" "" "24931.63" ""
"(6,2)*" "8" "" "24999.58" ""
"(6,2)*" "5" "" "25082.02" "o"
"" "6" "" "24867.17" ""
"" "6" "" "24899.06" ""
"" "10" "" "24978.98" ""
"*" "5" "" "24993.47" ""
"*" "8" "" "25012.21" ""
"*" "9" "" "25084.80" ""
"" "8" "" "25095.66" ""
"(5,0)*" "5" "" "25127.52" ""
"*" "4" "" "25203.92" ""
"*" "7" "" "25268.87" ""
"" "7" "" "25502.82" ""
"" "6" "" "25506.38" ""
"*" "7" "" "25567.53" ""
"*" "6" "" "25670.45" ""
"(5,1)*" "4" "" "25687.20" ""
"(5,1)*" "6" "" "25825.83" ""
"(5,1)*" "5" "" "25912.63" ""
"" "5" "" "25744.35" ""
"*" "8" "" "25760.39" ""
"*" "4" "" "25761.77" ""
"*" "10" "" "25774.39" ""
"*" "6" "" "25868.00" ""
"" "7" "" "25879.15" ""
"*" "6" "" "25920.88" ""
"" "5" "" "25993.57" ""
"*" "5" "" "26135.21" ""
"" "7" "" "26200.05" "?"
"" "9" "" "26244.60" ""
"" "5" "" "26284.69" ""
"" "8" "" "26349.49" ""
"" "6" "" "26387.81" ""
"" "7" "" "26425.15" ""
"3[7]" "8" "" "" ""
"3[7]" "6" "" "" ""
"3[7]" "7" "" "26435.71" ""
"" "5" "" "26506.51" ""
"" "6" "" "26533.88" ""
"(5,2)*" "3" "" "26607.16" ""
"(5,2)*" "4" "" "26998.27" ""
"(5,2)*" "5" "" "27109.93" ""
"(5,2)*" "6" "" "27199.20" ""
"(5,2)*" "7" "" "27427.08" ""
"(4,0)*" "4" "" "26662.41" ""
"" "10" "" "26752.29" ""
"3[8]" "7" "" "" ""
"3[8]" "9" "" "" ""
"3[8]" "8" "" "26759.81" ""
"(13/2,3/2)" "5" "" "" ""
"(13/2,3/2)" "6" "" "26785.45" ""
"(13/2,3/2)" "7" "" "26848.46" ""
"(13/2,3/2)" "8" "" "27059.89" ""
"*" "8" "" "26868.07" ""
"*" "3" "" "26886.01" ""
"" "9" "" "26955.00" ""
"*" "9" "" "27014.02" ""
"" "6" "" "27068.94" ""
"*" "6" "" "27190.74" ""
"*" "7" "" "27316.49" ""
"*" "8" "" "27319.08" ""
"(4,1)*" "3" "" "27321.26" ""
"(4,1)*" "5" "" "27685.87" ""
"(4,1)*" "4" "" "27751.46" ""
"" "9" "" "27390.97" ""
"" "8" "" "27445.90" ""
"" "7" "" "27462.41" ""
"" "6" "" "27474.64" ""
"" "4" "" "27578.02" ""
"*" "3" "" "27643.57" ""
"*" "4" "" "27659.02" ""
"" "5" "" "27680.12" ""
"*" "4" "" "27714.33" ""
"(7,1)*" "8" "" "27818.000" ""
"(7,1)*" "7" "" "27834.934" ""
"(7,1)*" "6" "" "28119.931" ""
"*" "7" "" "27837.54" ""
"*" "8" "" "27851.435" ""
"" "8" "" "27896.80" ""
"" "7" "" "27959.98" ""
"*" "7" "" "27984.513" ""
"" "6" "" "27987.90" ""
"*" "8" "" "28029.68" ""
"" "4" "" "28082.47" ""
"" "9" "" "28158.51" ""
"*" "8" "" "28177.14" ""
"*" "6" "" "28197.66" ""
"" "4" "" "28235.74" ""
"" "5" "" "28265.78" ""
"" "5" "" "28309.18" ""
"" "6" "" "28326.48" ""
"" "7" "" "28358.70" ""
"(11/2,3/2)" "5" "" "28379.82" ""
"(4,2)*" "2" "" "28407.01" ""
"(4,2)*" "3" "" "28694.51" ""
"(4,2)*" "4" "" "28923.05" ""
"(4,2)*" "5" "" "29054.36" ""
"(4,2)*" "6" "" "29447.11" ""
"" "10" "" "28433.41" ""
"*" "8" "" "28518.30" ""
"" "8" "" "28539.57" ""
"" "5" "" "28666.31" ""
"*" "8" "" "28795.26" ""
"*" "7" "" "28822.50" ""
"(11/2,1/2)" "6" "" "28849.06" ""
"" "6" "" "28909.39" ""
"" "8" "" "28971.42" ""
"" "5" "" "28987.02" ""
"*" "9" "" "29119.11" ""
"" "6" "" "29159.93" ""
"*" "7" "" "29161.38" ""
"" "7" "" "29169.98" ""
"" "8" "" "29291.32" ""
"" "9" "" "29465.04" ""
"" "5" "" "29496.33" ""
"" "7" "" "29512.27" ""
"" "7" "" "29532.42" ""
"" "3" "" "29626.20" ""
"" "6" "" "29682.16" ""
"" "10" "" "29706.72" ""
"" "9" "" "29714.72" ""
"" "11" "" "29742.49" ""
"" "8" "" "29841.69" ""
"" "7" "" "29877.37" ""
"*" "7" "" "29878.69" ""
"" "6" "" "30015.44" ""
"" "5" "" "30033.06" ""
"" "6" "" "30102.59" ""
"" "10" "" "30106.65" ""
"" "7" "" "30163.33" ""
"*" "6" "" "30426.59" ""
"" "7" "" "30444.88" ""
"" "9" "" "30459.64" ""
"" "6" "" "30475.95" ""
"" "5" "" "30512.73" ""
"*" "7" "" "30528.36" ""
"*" "8" "" "30544.57" ""
"(8,1)" "9" "" "30560.56" ""
"(8,1)" "8" "" "30979.53" ""
"(8,1)" "7" "" "31509.12" ""
"*" "7" "" "30566.07" ""
"" "8" "" "30600.15" ""
"" "7" "" "30621.87" ""
"" "4" "" "30662.79" ""
"(6,1)*" "5" "" "" ""
"(6,1)*" "7" "" "30711.717" ""
"(6,1)*" "6" "" "30778.958" ""
"" "9" "" "30716.06" ""
"" "8" "" "30739.79" ""
"*" "6" "" "30840.73" ""
"" "4" "" "30896.57" ""
"*" "5" "" "30904.89" ""
"*" "5" "" "30946.73" ""
"" "6" "" "30988.25" ""
"" "8" "" "31061.18" ""
"" "5" "" "31079.52" ""
"" "7" "" "31124.80" ""
"*" "7" "" "31132.30" ""
"" "6" "" "31180.01" ""
"*" "5" "" "31200.96" ""
"*" "7" "" "31229.29" ""
"" "8" "" "31233.57" ""
"" "9" "" "31287.04" ""
"*" "6" "" "31341.39" ""
"" "7" "" "31362.62" ""
"*" "6" "" "31399.49" ""
"*" "5" "" "31410.95" ""
"*" "7" "" "31423.02" ""
"" "7" "" "31423.04" ""
"" "8" "" "31469.00" ""
"" "10" "" "31489.64" ""
"*" "7" "" "31519.57" ""
"*" "5" "" "31522.73" ""
"" "6" "" "31529.68" ""
"" "5" "" "31545.99" ""
"*" "8" "" "31547.01" ""
"*" "6" "" "31555.97" ""
"*" "7" "" "31580.28" ""
"" "7" "" "31674.08" ""
"*" "7" "" "31698.32" ""
"" "5" "" "31742.14" ""
"*" "5" "" "31763.85" ""
"" "9" "" "31775.65" ""
"" "8" "" "31820.28" ""
"" "10" "" "31838.24" ""
"*" "7" "" "31878.42" ""
"*" "9" "" "31900.74" ""
"*" "7" "" "31946.72" ""
"*" "7" "" "32016.83" ""
"" "7" "" "32036.51" ""
"*" "6" "" "32082.00" ""
"*" "6" "" "32111.44" ""
"*" "6" "" "32126.16" ""
"" "9" "" "32206.27" ""
"*" "5" "" "32263.16" ""
"*" "5" "" "32359.02" ""
"" "7" "" "32382.29" ""
"" "6" "" "32392.59" ""
"" "7" "" "32411.25" ""
"" "10" "" "32428.08" ""
"" "8" "" "32428.66" ""
"*" "6" "" "32431.61" ""
"" "7" "" "32470.81" ""
"" "8" "" "32554.86" ""
"*" "7" "" "32564.97" ""
"*" "6" "" "32607.88" ""
"" "8" "" "32675.52" ""
"*" "9" "" "32711.90" ""
"" "3" "" "32712.54" ""
"" "7" "" "32722.87" ""
"" "9" "" "32763.21" ""
"*" "6" "" "32790.66" ""
"*" "6" "" "32834.29" ""
"*" "5" "" "32889.19" ""
"*" "7" "" "32920.20" ""
"*" "9" "" "32927.76" ""
"" "8" "" "32940.47" ""
"" "6" "" "32945.30" ""
"*" "6" "" "32970.87" ""
"(5,1)*" "6" "" "" ""
"(5,1)*" "5" "" "33025.64" ""
"(5,1)*" "4" "" "33324.06" ""
"" "9" "" "33086.26" ""
"" "7" "" "33110.16" ""
"*" "5" "" "33139.24" ""
"*" "8" "" "33165.77" ""
"" "6" "" "33210.13" ""
"" "8" "" "33246.13" ""
"" "9" "" "33252.28" ""
"*" "7" "" "33311.52" ""
"" "4" "" "33358.79" ""
"*" "8" "" "33358.83" "?"
"" "5" "" "33381.16" ""
"" "8" "" "33406.06" ""
"" "6" "" "33474.30" ""
"" "7" "" "33475.72" ""
"" "7" "" "33552.39" ""
"*" "5" "" "33652.23" ""
"" "6" "" "33656.96" ""
"*" "8" "" "33721.52" ""
"" "7" "" "33746.82" ""
"" "8" "" "33753.11" ""
"*" "5" "" "33788.79" ""
"" "7" "" "33806.12" ""
"*" "5" "" "33871.70" ""
"" "6" "" "33911.02" ""
"*" "5" "" "33947.13" ""
"*" "4" "" "33952.33" ""
"" "7" "" "34027.70" ""
"*" "4" "" "34038.46" ""
"" "7" "" "34060.16" ""
"" "7" "" "34131.12" ""
"*" "4" "" "34137.43" ""
"" "9" "" "34174.66" ""
"" "6" "" "34179.68" ""
"" "7" "" "34196.55" ""
"*" "7" "" "34213.65" ""
"" "6" "" "34296.69" ""
"" "7" "" "34324.66" ""
"*" "6" "" "34359.56" ""
"*" "4" "" "34359.80" ""
"*" "5" "" "34400.67" ""
"(4,1)*" "3" "" "" ""
"(4,1)*" "4" "" "" ""
"(4,1)*" "5" "" "34470.70" ""
"*" "4" "" "34486.89" ""
"*" "5" "" "34488.42" ""
"" "6" "" "34547.46" ""
"" "5" "" "34573.07" ""
"*" "5" "" "34662.11" ""
"" "8" "" "34676.95" ""
"" "6" "" "34679.75" ""
"" "9" "" "34689.19" ""
"*" "7" "" "34695.42" ""
"*" "4" "" "34720.68" ""
"" "5" "" "34742.71" ""
"" "7" "" "34742.84" ""
"*" "8" "" "34755.07" ""
"*" "6" "" "34770.30" ""
"" "10" "" "34776.04" ""
"*" "6" "" "34793.49" ""
"*" "8" "" "34803.87" ""
"" "9" "" "34829.30" ""
"" "5" "" "34841.48" ""
"" "7" "" "34843.11" ""
"*" "7" "" "34921.87" ""
"(7,1)" "8" "" "34922.08" ""
"(7,1)" "7" "" "35135.33" ""
"(7,1)" "6" "" "35421.17" ""
"*" "6" "" "34938.33" ""
"*" "7" "" "34975.00" ""
"" "7" "" "35003.75" ""
"*" "8" "" "35029.50" ""
"" "8" "" "35053.56" ""
"*" "8" "" "35082.98" ""
"*" "3" "" "35107.23" ""
"*" "7" "" "35107.28" ""
"*" "3" "" "35136.67" ""
"" "3" "" "35141.43" ""
"" "5" "" "35184.56" ""
"" "9" "" "35219.85" ""
"*" "9" "" "35221.27" ""
"" "7" "" "35221.98" ""
"*" "3" "" "35231.23" ""
"" "8" "" "35249.13" ""
"*" "4" "" "35316.31" ""
"" "5" "" "35354.27" ""
"" "8" "" "35377.51" ""
"" "10" "" "35385.78" ""
"*" "8" "" "35450.17" "?"
"*" "8" "" "35518.27" ""
"" "5" "" "35523.35" ""
"" "5" "" "35578.47" ""
"*" "9" "" "35580.84" "?"
"" "7" "" "35695.77" ""
"" "7" "" "35737.77" ""
"" "6" "" "35744.63" ""
"" "9" "" "35762.55" ""
"*" "8" "" "35777.79" ""
"*" "7" "" "35802.73" ""
"" "7" "" "35866.60" ""
"*" "8" "" "35894.36" ""
"*" "8" "" "35899.94" ""
"" "8" "" "35938.74" ""
"" "9" "" "35940.35" ""
"*" "10" "" "35945.02" ""
"" "6" "" "35970.10" ""
"" "6" "" "36093.54" ""
"*" "10" "" "36094.42" ""
"" "7" "" "36119.46" ""
"*" "7" "" "36248.02" ""
"*" "9" "" "36260.17" ""
"*" "8" "" "36288.48" ""
"" "8" "" "36308.08" ""
"*" "7" "" "36316.42" ""
"*" "9" "" "36341.53" ""
"" "6" "" "36365.09" ""
"" "8" "" "36392.11" ""
"" "7" "" "36417.25" ""
"*" "9" "" "36440.21" ""
"*" "7" "" "36441.99" ""
"*" "6" "" "36462.09" ""
"" "9" "" "36487.20" ""
"" "10" "" "36490.07" ""
"" "7" "" "36491.05" ""
"" "7" "" "36508.79" ""
"*" "8" "" "36534.04" ""
"*" "8" "" "36546.78" ""
"" "8" "" "36553.84" ""
"" "8" "" "36599.44" ""
"" "7" "" "36608.28" ""
"" "6" "" "36612.84" ""
"*" "8" "" "36618.34" "?"
"*" "10" "" "36640.90" ""
"(7,0)" "7" "" "36667.78" ""
"" "9" "" "36708.15" ""
"" "9" "" "36717.57" ""
"" "8" "" "36760.64" ""
"" "8" "" "36807.39" ""
"" "9" "" "36822.27" ""
"" "7" "" "36865.40" ""
"*" "10" "" "36868.73" ""
"*" "8" "" "36892.10" ""
"" "10" "" "36905.44" ""
"" "7" "" "36924.54" ""
"" "8" "" "36954.35" ""
"" "9" "" "36964.32" ""
"" "10" "" "37007.58" ""
"" "7" "" "37015.22" ""
"" "11" "" "37039.00" ""
"*" "8" "" "37041.02" ""
"" "6" "" "37058.60" ""
"*" "7" "" "37073.86" ""
"" "8" "" "37087.47" ""
"*" "9" "" "37090.46" ""
"" "9" "" "37121.97" ""
"" "6" "" "37125.45" ""
"" "7" "" "37135.33" ""
"*" "8" "" "37146.54" ""
"" "6" "" "37163.16" ""
"" "5" "" "37182.19" ""
"*" "11" "" "37182.98" ""
"" "7" "" "37212.06" ""
"" "5" "" "37231.26" ""
"" "7" "" "37295.97" ""
"" "11" "" "37299.36" ""
"" "6" "" "37324.62" ""
"" "8" "" "37339.89" ""
"*" "8" "" "37355.00" ""
"*" "7" "" "37360.01" ""
"" "7" "" "37366.09" ""
"*" "7" "" "37366.93" ""
"" "8" "" "37398.46" ""
"*" "7" "" "37471.09" "?"
"" "5" "" "37472.68" ""
"" "7" "" "37501.58" ""
"" "8" "" "37527.15" ""
"" "7" "" "37551.19" ""
"" "5" "" "37559.17" ""
"*" "7" "" "37587.58" ""
"" "9" "" "37591.83" ""
"" "7" "" "37607.89" ""
"*" "8" "" "37635.26" "?"
"*" "8" "" "37646.28" ""
"" "5" "" "37646.62" ""
"" "6" "" "37650.98" ""
"" "8" "" "37676.89" ""
"" "7" "" "37694.25" ""
"" "10" "" "37706.12" ""
"*" "8" "" "37721.06" ""
"" "9" "" "37751.03" ""
"" "7" "" "37751.34" ""
"" "8" "" "37820.22" ""
"*" "9" "" "37836.50" ""
"" "8" "" "37841.84" ""
"*" "8" "" "37843.38" ""
"" "6" "" "37856.42" ""
"" "9" "" "37933.63" ""
"" "7" "" "37980.03" ""
"" "8" "" "37992.78" ""
"*" "10" "" "38019.12" ""
"" "7" "" "38054.61" ""
"(6,1)" "6" "" "38070.03" ""
"(6,1)" "5" "" "38093.85" ""
"(6,1)" "7" "" "38123.30" ""
"" "8" "" "38078.12" ""
"" "5" "" "38101.89" ""
"*" "9" "" "38102.92" ""
"" "8" "" "38150.52" ""
"" "5" "" "38164.83" ""
"*" "8" "" "38202.48" ""
"" "6" "" "38214.81" ""
"*" "10" "" "38247.38" ""
"*" "7" "" "38251.55" ""
"" "8" "" "38254.97" ""
"" "7" "" "38264.28" ""
"" "9" "" "38285.36" ""
"*" "10" "" "38297.52" ""
"" "10" "" "38329.91" ""
"" "5" "" "38334.20" ""
"*" "7" "" "38342.48" ""
"" "8" "" "38356.27" ""
"*" "8" "" "38358.88" ""
"*" "7" "" "38362.65" ""
"" "7" "" "38366.31" ""
"*" "7" "" "38421.29" ""
"" "4" "" "38431.81" ""
"*" "8" "" "38438.87" ""
"" "9" "" "38444.35" ""
"" "7" "" "38452.46" ""
"" "7" "" "38515.31" ""
"" "8" "" "38516.86" ""
"" "7" "" "38524.52" ""
"" "8" "" "38551.45" ""
"*" "9" "" "38563.33" ""
"" "5" "" "38673.50" ""
"" "9" "" "38674.91" ""
"" "6" "" "38715.04" ""
"" "7" "" "38737.66" ""
"*" "7" "" "38779.77" ""
"*" "8" "" "38814.46" "?"
"" "6" "" "38852.60" ""
"" "7" "" "38861.55" ""
"" "8" "" "38870.01" ""
"" "5" "" "38890.92" ""
"" "7" "" "38954.01" ""
"" "5" "" "38964.68" ""
"" "8" "" "38973.45" ""
"" "9" "" "39035.85" ""
"" "5" "" "39048.18" ""
"" "7" "" "39078.14" ""
"" "4" "" "39084.97" ""
"" "8" "" "39096.06" ""
"" "7" "" "39097.74" ""
"" "9" "" "39120.61" ""
"*" "8" "" "39135.32" ""
"" "10" "" "39176.58" ""
"*" "10" "" "39182.40" ""
"*" "6" "" "39188.23" ""
"" "5" "" "39201.13" ""
"*" "7" "" "39325.28" ""
"" "9" "" "39332.82" ""
"" "7" "" "39332.97" ""
"" "8" "" "39376.93" ""
"" "4" "" "39378.71" ""
"*" "8" "" "39398.10" ""
"" "5" "" "39411.02" ""
"" "4" "" "39420.80" ""
"" "4" "" "39430.94" ""
"" "9" "" "39513.68" ""
"" "7" "" "39516.88" ""
"(6,0)" "6" "" "39545.90" ""
"" "10" "" "39573.04" ""
"*" "9" "" "39602.47" ""
"" "11" "" "39627.83" ""
"" "7" "" "39681.94" ""
"" "9" "" "39692.49" ""
"*" "8" "" "39714.20" ""
"" "5" "" "39748.26" ""
"" "10" "" "39750.08" ""
"" "7" "" "39777.62" ""
"" "5" "" "39780.02" ""
"" "6" "" "39786.30" ""
"" "6" "" "39849.81" ""
"" "4" "" "39853.98" ""
"" "9" "" "39895.76" ""
"*" "9" "" "39903.34" ""
"" "8" "" "39909.55" ""
"" "10" "" "40005.82" ""
"(5,1)" "4" "" "40023.04" ""
"(5,1)" "5" "" "40213.21" ""
"(5,1)" "6" "" "40520.48" ""
"*" "9" "" "40030.48" ""
"" "7" "" "40245.78" ""
"" "3" "" "40295.08" ""
"" "7" "" "40396.05" ""
"" "6" "" "40410.19" ""
"" "8" "" "40472.96" ""
"" "6" "" "40491.53" ""
"*" "9" "" "40594.03" ""
"*" "8" "" "40605.98" ""
"" "3" "" "40621.22" ""
"" "4" "" "40625.90" ""
"" "8" "" "40639.33" ""
"" "9" "" "40683.59" ""
"" "3" "" "40782.04" ""
"" "5" "" "40796.42" ""
"" "8" "" "40833.31" ""
"" "4" "" "40835.60" ""
"" "8" "" "40871.39" ""
"" "4" "" "40924.80" ""
"" "5" "" "40931.58" ""
"" "4" "" "40973.37" ""
"" "3" "" "40983.60" ""
"" "9" "" "41029.59" ""
"" "8" "" "41037.23" ""
"" "7" "" "41053.08" ""
"" "8" "" "41098.71" ""
"" "9" "" "41135.13" ""
"*" "8" "" "41136.59" ""
"" "8" "" "41203.90" ""
"" "9" "" "41210.30" ""
"" "9" "" "41235.96" ""
"" "7" "" "41371.37" ""
"" "8" "" "41383.00" ""
"" "4" "" "41458.22" ""
"(4,1)" "3" "" "41492.41" ""
"(4,1)" "4" "" "41859.44" ""
"(4,1)" "5" "" "42490.50" ""
"" "7" "" "41503.84" ""
"*" "6" "" "41577.18" ""
"" "8" "" "41638.55" ""
"*" "7" "" "41642.79" ""
"*" "6" "" "41656.46" ""
"" "4" "" "41957.18" ""
"" "4" "" "42146.02" ""
"" "3" "" "42220.12" ""
"" "4" "" "42236.05" ""
"*" "6" "" "42375.03" ""
"*" "5" "" "42479.83" ""
"" "10" "" "42668.10" ""
"" "4" "" "42892.94" ""
"" "8" "" "42921.39" ""
"" "4" "" "42940.96" ""
"" "7" "" "42984.71" ""
"" "5" "" "43020.84" ""
"" "7" "" "43222.10" ""
"" "8" "" "43728.57" ""
"" "8" "" "44487.65" ""
"" "6" "" "45703.64" ""
"" "7" "" "46391.45" ""
"" "8" "" "47354.04" ""

View File

@ -0,0 +1,182 @@
import os, csv
from pathlib import Path
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_theme(style="ticks")
def parse_NIST_data(path, min_J, max_J, max_wavenumber):
data_list = []
with open(path) as f:
reader = csv.reader(f, delimiter="\t")
data_list = list(reader)
#collect data
Parity = np.zeros(len(data_list))
J = np.zeros(len(data_list))
Wavenumber = np.zeros(len(data_list))
for i in range(1, len(data_list)):
try:
tmp = data_list[:][i]
if not tmp[0] == '' and tmp[0].find('*') != -1:
Parity[i] = 1
elif not tmp[0] == '':
Parity[i] = 0
J[i] = int(tmp[1])
Wavenumber[i] = float(tmp[3])
except ValueError:
J[i] = np.nan
Wavenumber[i] = np.nan
remove_idxs = []
for i in range(1, len(data_list)):
p = Parity[i]
j = J[i]
wn = Wavenumber[i]
if np.isnan(p) or np.isnan(j) or np.isnan(wn):
remove_idxs.append(i)
Parity = np.delete(Parity, remove_idxs)
J = np.delete(J, remove_idxs)
Wavenumber = np.delete(Wavenumber, remove_idxs)
#sort data
sorting_indices = np.argsort(J)
Parity = Parity[sorting_indices]
J = J[sorting_indices]
Wavenumber = Wavenumber[sorting_indices]
# splice data to within user-defined range of Js
splice_idx_start = np.where(J==min_J)[0][0]
splice_idx_stop = len(J) - 1 - np.where(J[::-1]==max_J)[0][0]
Parity = Parity[splice_idx_start:splice_idx_stop]
J = J[splice_idx_start:splice_idx_stop]
Wavenumber = Wavenumber[splice_idx_start:splice_idx_stop]
# splice data to within user-defined range of Wavenumbers
splice_idxs = [i for i in range(len(Wavenumber)) if Wavenumber[i] > max_wavenumber]
Parity = [ele for idx, ele in enumerate(Parity) if idx not in splice_idxs]
J = [ele for idx, ele in enumerate(J) if idx not in splice_idxs]
Wavenumber = [ele for idx, ele in enumerate(Wavenumber) if idx not in splice_idxs]
# Create a Pandas data frame with the data
dataset = pd.DataFrame(np.array(list(zip(Parity, J, Wavenumber))), columns=['Parity', 'J', 'Wavenumber'])
return dataset
def plot_level_structure_with_red_and_blue_transitions(*args, **kwargs):
#start plotting
f, ax = plt.subplots(figsize=(4.5, 7))
#plt.subplots_adjust(top=0.973, bottom=0.121, left=0.244, right=0.959, hspace=0.2, wspace=0.2)
named_colors = ['r', 'm']
Red_Blue_colors = ['#ab162a', '#cf5246', '#eb9172', '#fac8af', '#faeae1', '#e6eff4', '#bbdaea', '#7bb6d6', '#3c8abe', '#1e61a5']
#draw levels
plot_handle = sns.scatterplot(x='J', y='Wavenumber', data = dataframe, s=2000, hue = 'Parity', palette = sns.color_palette(named_colors), marker = '_', linewidth=1.5, legend=False)
#write electronic configuration for GS
#ax.text(gs_J + 0.15, gs_wavenumber + 400, '$6s^2$')
#draw guide line for GS
#plt.axhline(y=gs_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
#write wavelength of red transition
ax.text(red_J - 0.4, red_wavenumber * 0.54 - 500, '626.082 nm', color = '#db2929', fontsize = 17, fontweight = 'bold')
#ax.text(red_J - 0.43, red_wavenumber * 0.38 - 500 , '$(\\Gamma = 2\\pi\\times 136$'+ '\n' + '$~ \mathrm{kHz})$', fontsize = 14, color = '#db2929')
ax.text(red_J - 0.325, red_wavenumber * 0.45 - 500 , '$(136~ \mathrm{kHz})$', fontsize = 16, color = '#db2929')
#draw red transition arrow
ax.annotate('',
xy=(red_J, red_wavenumber),
xytext=(gs_J, gs_wavenumber),
arrowprops=dict(color='#db2929', width=1.5),
horizontalalignment='right',
verticalalignment='top')
#write electronic configuration for triplet excited state
#ax.text(red_J + 0.35, red_wavenumber + 200, '$6s6p(^3P_1)$', fontsize = 10)
#draw guide line for triplet excited state
plt.axhline(y=red_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
#write wavelength of red transition
ax.text(blue_J - 1.8, blue_wavenumber * 0.44, '421.291 nm', color = '#2630ea', fontsize = 17, fontweight = 'bold')
# ax.text(blue_J - 1.85, blue_wavenumber * 0.33, '$(\\Gamma = 2\\pi\\times 32.2$'+ '\n' + '$~ \mathrm{MHz})$', fontsize = 14, color = '#2630ea') #$(\\Gamma = 2\\pi\\times 32.2 ~ \mathrm{MHz})$
ax.text(blue_J - 1.775, blue_wavenumber * 0.38, '$(32.2~ \mathrm{MHz})$', fontsize = 16, color = '#2630ea') #$(\\Gamma = 2\\pi\\times 32.2 ~ \mathrm{MHz})$
#ax.text(blue_J - 1.5, blue_wavenumber * 0.3, '$32.2 ~ \mathrm{MHz})$', fontsize = 10, color = '#2630ea')
#draw blue transition arrow
ax.annotate('',
xy=(blue_J, blue_wavenumber),
xytext=(gs_J, gs_wavenumber),
arrowprops=dict(color='#2630ea', width=3.5),
horizontalalignment='right',
verticalalignment='top')
#write electronic configuration for singlet excited state
#ax.text(blue_J + 0.35, blue_wavenumber + 200, '$6s6p(^1P_1)$', fontsize = 10)
#draw guide line for singlet excited state
plt.axhline(y=blue_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
#figure options
f.canvas.draw()
plt.xlabel('J', fontsize=20, fontweight = 'bold')
#plt.ylabel('$\\tilde{v}~(cm^{-1})$', fontsize=16)
plt.ylabel('Wavelength (nm)', fontsize=20, fontweight = 'bold')
plot_handle.set_xticks(range(min_J-1, max_J+2))
ax.get_xticklabels()[0].set_visible(False)
ax.get_xticklabels()[-1].set_visible(False)
ax.get_xticklines()[0].set_visible(False)
ax.get_xticklines()[-2].set_visible(False)
ax.set_xticklabels(ax.get_xticks(), weight='bold')
yticklabels = [item.get_text() for item in ax.get_yticklabels()]
yticklabels = ['' if item.startswith('') or item.startswith('0') else item for item in yticklabels]
yticks = [float(item) if item != '' else 0.0 for item in yticklabels]
new_yticks = np.arange(min(yticks), max_wavenumber, 4000)
plot_handle.set_yticks(new_yticks)
new_yticklabels = [round(1e7/item) if item != 0 else item for item in new_yticks]
ax.set_yticklabels(new_yticklabels, weight='bold')
ax.get_yticklabels()[0].set_visible(False)
#ax.get_yticklabels()[-1].set_visible(False)
ax.get_yticklines()[0].set_visible(False)
#ax.get_yticklines()[-2].set_visible(False)
plt.tick_params(axis='both', which='major', labelsize=16)
#f.tight_layout()
#plt.show()
f.savefig(Path(home_path + os.sep + 'result.pdf'), format='pdf', bbox_inches = "tight")
if __name__ == '__main__':
min_J = 8
max_J = 9
#max_wavenumber = 24500.0
max_wavenumber = 28500.0
#Ground State: [Xe]4f^{10} 6s^2(^5I_8)
gs_J = 8
gs_wavenumber = 0.0
#626 nm transition GS ---> [Xe]4f^{10}(^5I_8) 6s6p(^3P_1)(8,1)_9
red_J = 9
red_wavenumber = 15972.35
#421 nm transition GS ---> [Xe]4f^{10}(^5I_8) 6s6p(^1P_1)(8,1)_9
blue_J = 9
blue_wavenumber = 23736.610
NIST_Dy_level_data_filename= 'Dylevels.txt'
home_path = str(Path(__file__).parent.resolve())
dataframe = parse_NIST_data(home_path + os.sep + NIST_Dy_level_data_filename, min_J, max_J, max_wavenumber)
plot_level_structure_with_red_and_blue_transitions(dataframe, gs_J, gs_wavenumber, red_J, red_wavenumber, blue_J, blue_wavenumber, max_wavenumber, home_path)