Made changes to plotting style, fixed a bug that was excluding some levels.
This commit is contained in:
parent
ea757ad62d
commit
124ef73439
Binary file not shown.
@ -5,7 +5,7 @@ import pandas as pd
|
|||||||
import seaborn as sns
|
import seaborn as sns
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
sns.set_theme(style="white")
|
sns.set_theme(style="ticks")
|
||||||
|
|
||||||
def parse_NIST_data(path, min_J, max_J, max_wavenumber):
|
def parse_NIST_data(path, min_J, max_J, max_wavenumber):
|
||||||
|
|
||||||
@ -17,7 +17,7 @@ def parse_NIST_data(path, min_J, max_J, max_wavenumber):
|
|||||||
#collect data
|
#collect data
|
||||||
Parity = np.zeros(len(data_list))
|
Parity = np.zeros(len(data_list))
|
||||||
J = np.zeros(len(data_list))
|
J = np.zeros(len(data_list))
|
||||||
wavenumber = np.zeros(len(data_list))
|
Wavenumber = np.zeros(len(data_list))
|
||||||
for i in range(1, len(data_list)):
|
for i in range(1, len(data_list)):
|
||||||
try:
|
try:
|
||||||
tmp = data_list[:][i]
|
tmp = data_list[:][i]
|
||||||
@ -26,42 +26,45 @@ def parse_NIST_data(path, min_J, max_J, max_wavenumber):
|
|||||||
elif not tmp[0] == '':
|
elif not tmp[0] == '':
|
||||||
Parity[i] = 0
|
Parity[i] = 0
|
||||||
J[i] = int(tmp[1])
|
J[i] = int(tmp[1])
|
||||||
wavenumber[i] = float(tmp[3])
|
Wavenumber[i] = float(tmp[3])
|
||||||
if wavenumber[i] > max_wavenumber:
|
|
||||||
J[i] = np.nan
|
|
||||||
wavenumber[i] = np.nan
|
|
||||||
except ValueError:
|
except ValueError:
|
||||||
J[i] = np.nan
|
J[i] = np.nan
|
||||||
wavenumber[i] = np.nan
|
Wavenumber[i] = np.nan
|
||||||
|
|
||||||
remove_idxs = []
|
remove_idxs = []
|
||||||
for i in range(1, len(data_list)):
|
for i in range(1, len(data_list)):
|
||||||
p = Parity[i]
|
p = Parity[i]
|
||||||
j = J[i]
|
j = J[i]
|
||||||
wn = wavenumber[i]
|
wn = Wavenumber[i]
|
||||||
if np.isnan(p) or np.isnan(j) or np.isnan(wn):
|
if np.isnan(p) or np.isnan(j) or np.isnan(wn):
|
||||||
remove_idxs.append(i)
|
remove_idxs.append(i)
|
||||||
|
|
||||||
Parity = np.delete(Parity, remove_idxs)
|
Parity = np.delete(Parity, remove_idxs)
|
||||||
J = np.delete(J, remove_idxs)
|
J = np.delete(J, remove_idxs)
|
||||||
wavenumber = np.delete(wavenumber, remove_idxs)
|
Wavenumber = np.delete(Wavenumber, remove_idxs)
|
||||||
|
|
||||||
#sort data
|
#sort data
|
||||||
sorting_indices = np.argsort(J)
|
sorting_indices = np.argsort(J)
|
||||||
Parity = Parity[sorting_indices]
|
Parity = Parity[sorting_indices]
|
||||||
J = J[sorting_indices]
|
J = J[sorting_indices]
|
||||||
wavenumber = wavenumber[sorting_indices]
|
Wavenumber = Wavenumber[sorting_indices]
|
||||||
|
|
||||||
# splice data to within user-defined range
|
# splice data to within user-defined range of Js
|
||||||
splice_idx_start = np.where(J==min_J)[0][0]
|
splice_idx_start = np.where(J==min_J)[0][0]
|
||||||
splice_idx_stop = len(J) - 1 - np.where(J[::-1]==max_J)[0][0]
|
splice_idx_stop = len(J) - 1 - np.where(J[::-1]==max_J)[0][0]
|
||||||
|
|
||||||
Parity = Parity[splice_idx_start:splice_idx_stop]
|
Parity = Parity[splice_idx_start:splice_idx_stop]
|
||||||
J = J[splice_idx_start:splice_idx_stop]
|
J = J[splice_idx_start:splice_idx_stop]
|
||||||
wavenumber = wavenumber[splice_idx_start:splice_idx_stop]
|
Wavenumber = Wavenumber[splice_idx_start:splice_idx_stop]
|
||||||
|
|
||||||
|
# splice data to within user-defined range of Wavenumbers
|
||||||
|
splice_idxs = [i for i in range(len(Wavenumber)) if Wavenumber[i] > max_wavenumber]
|
||||||
|
Parity = [ele for idx, ele in enumerate(Parity) if idx not in splice_idxs]
|
||||||
|
J = [ele for idx, ele in enumerate(J) if idx not in splice_idxs]
|
||||||
|
Wavenumber = [ele for idx, ele in enumerate(Wavenumber) if idx not in splice_idxs]
|
||||||
|
|
||||||
# Create a Pandas data frame with the data
|
# Create a Pandas data frame with the data
|
||||||
dataset = pd.DataFrame(np.array(list(zip(Parity, J, wavenumber))), columns=['Parity', 'J', 'Wavenumber'])
|
dataset = pd.DataFrame(np.array(list(zip(Parity, J, Wavenumber))), columns=['Parity', 'J', 'Wavenumber'])
|
||||||
|
|
||||||
return dataset
|
return dataset
|
||||||
|
|
||||||
@ -73,15 +76,16 @@ def plot_level_structure_with_red_and_blue_transitions(*args, **kwargs):
|
|||||||
Red_Blue_colors = ['#ab162a', '#cf5246', '#eb9172', '#fac8af', '#faeae1', '#e6eff4', '#bbdaea', '#7bb6d6', '#3c8abe', '#1e61a5']
|
Red_Blue_colors = ['#ab162a', '#cf5246', '#eb9172', '#fac8af', '#faeae1', '#e6eff4', '#bbdaea', '#7bb6d6', '#3c8abe', '#1e61a5']
|
||||||
|
|
||||||
#draw levels
|
#draw levels
|
||||||
plot_handle = sns.scatterplot(x='J', y='Wavenumber', data = dataframe, s=500, hue = 'Parity', palette = sns.color_palette(named_colors), marker = '_', linewidth=1, legend=False)
|
plot_handle = sns.scatterplot(x='J', y='Wavenumber', data = dataframe, s=2000, hue = 'Parity', palette = sns.color_palette(named_colors), marker = '_', linewidth=1.5, legend=False)
|
||||||
|
|
||||||
#write electronic configuration for GS
|
#write electronic configuration for GS
|
||||||
ax.text(gs_J + 0.15, gs_wavenumber + 400, '$6s^2$')
|
ax.text(gs_J + 0.15, gs_wavenumber + 400, '$6s^2$')
|
||||||
#draw guide line for GS
|
#draw guide line for GS
|
||||||
plt.axhline(y=gs_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
|
#plt.axhline(y=gs_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
|
||||||
|
|
||||||
#write wavelength of red transition
|
#write wavelength of red transition
|
||||||
ax.text(red_J - 0.4, red_wavenumber * 0.5, '$626.082 ~ \mathrm{nm}$')
|
ax.text(red_J - 0.4, red_wavenumber * 0.5, '$626.082 ~ \mathrm{nm}$', color = '#db2929')
|
||||||
|
ax.text(red_J - 0.4, red_wavenumber * 0.46, '$(\\Gamma = 2\\pi\\times 136 ~ \mathrm{kHz})$', fontsize = 8, color = '#db2929')
|
||||||
#draw red transition arrow
|
#draw red transition arrow
|
||||||
ax.annotate('',
|
ax.annotate('',
|
||||||
xy=(red_J, red_wavenumber),
|
xy=(red_J, red_wavenumber),
|
||||||
@ -91,12 +95,13 @@ def plot_level_structure_with_red_and_blue_transitions(*args, **kwargs):
|
|||||||
verticalalignment='top')
|
verticalalignment='top')
|
||||||
|
|
||||||
#write electronic configuration for triplet excited state
|
#write electronic configuration for triplet excited state
|
||||||
ax.text(red_J + 0.18, red_wavenumber + 400, '$6s6p(^3P_1)$')
|
ax.text(red_J + 0.35, red_wavenumber + 200, '$6s6p(^3P_1)$', fontsize = 10)
|
||||||
#draw guide line for triplet excited state
|
#draw guide line for triplet excited state
|
||||||
plt.axhline(y=red_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
|
plt.axhline(y=red_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
|
||||||
|
|
||||||
#write wavelength of red transition
|
#write wavelength of red transition
|
||||||
ax.text(blue_J - 1.5, blue_wavenumber * 0.55, '$421.291~ \mathrm{nm}$')
|
ax.text(blue_J - 1.5, blue_wavenumber * 0.55, '$421.291~ \mathrm{nm}$', color = '#2630ea')
|
||||||
|
ax.text(blue_J - 1.55, blue_wavenumber * 0.52, '$(\\Gamma = 2\\pi\\times 32.2 ~ \mathrm{MHz})$', fontsize = 8, color = '#2630ea')
|
||||||
#draw blue transition arrow
|
#draw blue transition arrow
|
||||||
ax.annotate('',
|
ax.annotate('',
|
||||||
xy=(blue_J, blue_wavenumber),
|
xy=(blue_J, blue_wavenumber),
|
||||||
@ -106,18 +111,36 @@ def plot_level_structure_with_red_and_blue_transitions(*args, **kwargs):
|
|||||||
verticalalignment='top')
|
verticalalignment='top')
|
||||||
|
|
||||||
#write electronic configuration for singlet excited state
|
#write electronic configuration for singlet excited state
|
||||||
ax.text(blue_J + 0.18, blue_wavenumber + 400, '$6s6p(^1P_1)$')
|
ax.text(blue_J + 0.35, blue_wavenumber + 200, '$6s6p(^1P_1)$', fontsize = 10)
|
||||||
#draw guide line for singlet excited state
|
#draw guide line for singlet excited state
|
||||||
plt.axhline(y=blue_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
|
plt.axhline(y=blue_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
|
||||||
|
|
||||||
#figure options
|
#figure options
|
||||||
|
f.canvas.draw()
|
||||||
plt.xlabel('$J$', fontsize=16)
|
plt.xlabel('$J$', fontsize=16)
|
||||||
plt.ylabel('$\\tilde{v}~(cm^{-1})$', fontsize=16)
|
plt.ylabel('$\\tilde{v}~(cm^{-1})$', fontsize=16)
|
||||||
#plt.title('Dysprosium I Energy Level Structure', fontsize=20)
|
plt.ylabel('$\\lambda~(nm)$', fontsize=16)
|
||||||
|
|
||||||
plot_handle.set_xticks(range(min_J-1, max_J+2))
|
plot_handle.set_xticks(range(min_J-1, max_J+2))
|
||||||
plt.tick_params(axis='both', which='major', labelsize=12)
|
|
||||||
ax.get_xticklabels()[0].set_visible(False)
|
ax.get_xticklabels()[0].set_visible(False)
|
||||||
ax.get_xticklabels()[-1].set_visible(False)
|
ax.get_xticklabels()[-1].set_visible(False)
|
||||||
|
ax.get_xticklines()[0].set_visible(False)
|
||||||
|
ax.get_xticklines()[-2].set_visible(False)
|
||||||
|
|
||||||
|
yticklabels = [item.get_text() for item in ax.get_yticklabels()]
|
||||||
|
yticklabels = ['' if item.startswith('−') or item.startswith('0') else item for item in yticklabels]
|
||||||
|
yticks = [float(item) if item != '' else 0.0 for item in yticklabels]
|
||||||
|
new_yticks = np.arange(min(yticks), max(yticks), 4000)
|
||||||
|
plot_handle.set_yticks(new_yticks)
|
||||||
|
new_yticklabels = [round(1e7/item) if item != 0 else item for item in new_yticks]
|
||||||
|
ax.set_yticklabels(new_yticklabels)
|
||||||
|
ax.get_yticklabels()[0].set_visible(False)
|
||||||
|
ax.get_yticklabels()[-1].set_visible(False)
|
||||||
|
ax.get_yticklines()[0].set_visible(False)
|
||||||
|
ax.get_yticklines()[-2].set_visible(False)
|
||||||
|
|
||||||
|
plt.tick_params(axis='both', which='major', labelsize=14)
|
||||||
|
|
||||||
#plt.show()
|
#plt.show()
|
||||||
|
|
||||||
f.savefig(Path(home_path + os.sep + 'result.pdf'), format='pdf', bbox_inches = "tight")
|
f.savefig(Path(home_path + os.sep + 'result.pdf'), format='pdf', bbox_inches = "tight")
|
||||||
|
Loading…
Reference in New Issue
Block a user