151 lines
5.2 KiB
Python
151 lines
5.2 KiB
Python
|
import os, csv
|
||
|
from pathlib import Path
|
||
|
import numpy as np
|
||
|
import pandas as pd
|
||
|
import seaborn as sns
|
||
|
import matplotlib.pyplot as plt
|
||
|
|
||
|
sns.set_theme(style="white")
|
||
|
|
||
|
def parse_NIST_data(path, min_J, max_J, max_wavenumber):
|
||
|
|
||
|
data_list = []
|
||
|
with open(path) as f:
|
||
|
reader = csv.reader(f, delimiter="\t")
|
||
|
data_list = list(reader)
|
||
|
|
||
|
#collect data
|
||
|
Parity = np.zeros(len(data_list))
|
||
|
J = np.zeros(len(data_list))
|
||
|
wavenumber = np.zeros(len(data_list))
|
||
|
for i in range(1, len(data_list)):
|
||
|
try:
|
||
|
tmp = data_list[:][i]
|
||
|
if not tmp[0] == '' and tmp[0].find('*') != -1:
|
||
|
Parity[i] = 1
|
||
|
elif not tmp[0] == '':
|
||
|
Parity[i] = 0
|
||
|
J[i] = int(tmp[1])
|
||
|
wavenumber[i] = float(tmp[3])
|
||
|
if wavenumber[i] > max_wavenumber:
|
||
|
J[i] = np.nan
|
||
|
wavenumber[i] = np.nan
|
||
|
except ValueError:
|
||
|
J[i] = np.nan
|
||
|
wavenumber[i] = np.nan
|
||
|
|
||
|
remove_idxs = []
|
||
|
for i in range(1, len(data_list)):
|
||
|
p = Parity[i]
|
||
|
j = J[i]
|
||
|
wn = wavenumber[i]
|
||
|
if np.isnan(p) or np.isnan(j) or np.isnan(wn):
|
||
|
remove_idxs.append(i)
|
||
|
|
||
|
Parity = np.delete(Parity, remove_idxs)
|
||
|
J = np.delete(J, remove_idxs)
|
||
|
wavenumber = np.delete(wavenumber, remove_idxs)
|
||
|
|
||
|
#sort data
|
||
|
sorting_indices = np.argsort(J)
|
||
|
Parity = Parity[sorting_indices]
|
||
|
J = J[sorting_indices]
|
||
|
wavenumber = wavenumber[sorting_indices]
|
||
|
|
||
|
# splice data to within user-defined range
|
||
|
splice_idx_start = np.where(J==min_J)[0][0]
|
||
|
splice_idx_stop = len(J) - 1 - np.where(J[::-1]==max_J)[0][0]
|
||
|
|
||
|
Parity = Parity[splice_idx_start:splice_idx_stop]
|
||
|
J = J[splice_idx_start:splice_idx_stop]
|
||
|
wavenumber = wavenumber[splice_idx_start:splice_idx_stop]
|
||
|
|
||
|
# Create a Pandas data frame with the data
|
||
|
dataset = pd.DataFrame(np.array(list(zip(Parity, J, wavenumber))), columns=['Parity', 'J', 'Wavenumber'])
|
||
|
|
||
|
return dataset
|
||
|
|
||
|
def plot_level_structure_with_red_and_blue_transitions(*args, **kwargs):
|
||
|
|
||
|
#start plotting
|
||
|
f, ax = plt.subplots(figsize=(4, 8))
|
||
|
named_colors = ['r', 'm']
|
||
|
Red_Blue_colors = ['#ab162a', '#cf5246', '#eb9172', '#fac8af', '#faeae1', '#e6eff4', '#bbdaea', '#7bb6d6', '#3c8abe', '#1e61a5']
|
||
|
|
||
|
#draw levels
|
||
|
plot_handle = sns.scatterplot(x='J', y='Wavenumber', data = dataframe, s=500, hue = 'Parity', palette = sns.color_palette(named_colors), marker = '_', linewidth=1, legend=False)
|
||
|
|
||
|
#write electronic configuration for GS
|
||
|
ax.text(gs_J + 0.15, gs_wavenumber + 400, '$6s^2$')
|
||
|
#draw guide line for GS
|
||
|
plt.axhline(y=gs_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
|
||
|
|
||
|
#write wavelength of red transition
|
||
|
ax.text(red_J - 0.4, red_wavenumber * 0.5, '$626.082 ~ \mathrm{nm}$')
|
||
|
#draw red transition arrow
|
||
|
ax.annotate('',
|
||
|
xy=(red_J, red_wavenumber),
|
||
|
xytext=(gs_J, gs_wavenumber),
|
||
|
arrowprops=dict(color='#db2929', alpha=0.8, width=1.5),
|
||
|
horizontalalignment='right',
|
||
|
verticalalignment='top')
|
||
|
|
||
|
#write electronic configuration for triplet excited state
|
||
|
ax.text(red_J + 0.18, red_wavenumber + 400, '$6s6p(^3P_1)$')
|
||
|
#draw guide line for triplet excited state
|
||
|
plt.axhline(y=red_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
|
||
|
|
||
|
#write wavelength of red transition
|
||
|
ax.text(blue_J - 1.5, blue_wavenumber * 0.55, '$421.291~ \mathrm{nm}$')
|
||
|
#draw blue transition arrow
|
||
|
ax.annotate('',
|
||
|
xy=(blue_J, blue_wavenumber),
|
||
|
xytext=(gs_J, gs_wavenumber),
|
||
|
arrowprops=dict(color='#2630ea', alpha=0.8, width=3.5),
|
||
|
horizontalalignment='right',
|
||
|
verticalalignment='top')
|
||
|
|
||
|
#write electronic configuration for singlet excited state
|
||
|
ax.text(blue_J + 0.18, blue_wavenumber + 400, '$6s6p(^1P_1)$')
|
||
|
#draw guide line for singlet excited state
|
||
|
plt.axhline(y=blue_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
|
||
|
|
||
|
#figure options
|
||
|
plt.xlabel('$J$', fontsize=16)
|
||
|
plt.ylabel('$\\tilde{v}~(cm^{-1})$', fontsize=16)
|
||
|
#plt.title('Dysprosium I Energy Level Structure', fontsize=20)
|
||
|
plot_handle.set_xticks(range(min_J-1, max_J+2))
|
||
|
plt.tick_params(axis='both', which='major', labelsize=12)
|
||
|
ax.get_xticklabels()[0].set_visible(False)
|
||
|
ax.get_xticklabels()[-1].set_visible(False)
|
||
|
#plt.show()
|
||
|
|
||
|
f.savefig(Path(home_path + os.sep + 'result.pdf'), format='pdf', bbox_inches = "tight")
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
min_J = 8
|
||
|
max_J = 9
|
||
|
max_wavenumber = 25500.0
|
||
|
|
||
|
#Ground State: [Xe]4f^{10} 6s^2(^5I_8)
|
||
|
gs_J = 8
|
||
|
gs_wavenumber = 0.0
|
||
|
|
||
|
#626 nm transition GS ---> [Xe]4f^{10}(^5I_8) 6s6p(^3P_1)(8,1)_9
|
||
|
red_J = 9
|
||
|
red_wavenumber = 15972.35
|
||
|
|
||
|
#421 nm transition GS ---> [Xe]4f^{10}(^5I_8) 6s6p(^1P_1)(8,1)_9
|
||
|
blue_J = 9
|
||
|
blue_wavenumber = 23736.610
|
||
|
|
||
|
NIST_Dy_level_data_filename= 'Dylevels.txt'
|
||
|
home_path = str(Path(__file__).parent.resolve())
|
||
|
|
||
|
dataframe = parse_NIST_data(home_path + os.sep + NIST_Dy_level_data_filename, min_J, max_J, max_wavenumber)
|
||
|
plot_level_structure_with_red_and_blue_transitions(dataframe, gs_J, gs_wavenumber, red_J, red_wavenumber, blue_J, blue_wavenumber, home_path)
|
||
|
|
||
|
|
||
|
|
||
|
|