235 lines
11 KiB
Matlab
235 lines
11 KiB
Matlab
%% This script is testing the functionalities of the MOT Capture Process Simulation Classes
|
|
%
|
|
% Important: Run only sectionwise!!
|
|
|
|
%% - Testing the MOTCaptureProcess-Class
|
|
% - Create MOTCaptureProcess object with specified options
|
|
% - Automatically creates Beams objects
|
|
OptionsStruct = struct;
|
|
OptionsStruct.ErrorEstimationMethod = 'bootstrap'; % 'jackknife' | 'bootstrap'
|
|
OptionsStruct.TimeStep = 50e-06; % in s
|
|
OptionsStruct.SimulationTime = 4e-03; % in s
|
|
OptionsStruct.SpontaneousEmission = true;
|
|
OptionsStruct.Sideband = false;
|
|
OptionsStruct.PushBeam = true;
|
|
OptionsStruct.Gravity = true;
|
|
OptionsStruct.BackgroundCollision = true;
|
|
OptionsStruct.SaveData = true;
|
|
% OptionsStruct.SaveDirectory = '';
|
|
options = Helper.convertstruct2cell(OptionsStruct);
|
|
clear OptionsStruct
|
|
|
|
Oven = Simulator.Oven(options{:});
|
|
MOT2D = Simulator.TwoDimensionalMOT(options{:});
|
|
Beams = MOT2D.Beams;
|
|
|
|
%% - Run Simulation
|
|
MOT2D.NumberOfAtoms = 5000;
|
|
MOT2D.SidebandBeam = false;
|
|
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
|
|
CoolingBeam.Power = 0.4;
|
|
CoolingBeam.Waist = 13.3e-03;
|
|
CoolingBeam.Detuning = -1.67*Helper.PhysicsConstants.BlueLinewidth;
|
|
PushBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Push'), Beams)};
|
|
PushBeam.Power = 0.025;
|
|
PushBeam.Waist = 0.81e-03;
|
|
PushBeam.Detuning = 0;
|
|
[LoadingRate, ~] = MOT2D.runSimulation(Oven);
|
|
%% - Plot initial distribution
|
|
% - sampling the position distribution
|
|
InitialPositions = Oven.initialPositionSampling();
|
|
% - sampling the velocity distribution
|
|
InitialVelocities = Oven.initialVelocitySampling(MOT2D);
|
|
NumberOfBins = 100;
|
|
Plotter.plotPositionAndVelocitySampling(NumberOfBins, InitialPositions, InitialVelocities);
|
|
|
|
%% - Plot distributions of magnitude and direction of initial velocities
|
|
NumberOfBins = 50;
|
|
Plotter.plotInitialVeloctiySamplingVsAngle(Oven, MOT2D, NumberOfBins)
|
|
|
|
%% - Plot Magnetic Field
|
|
XAxisRange = [-5 5];
|
|
YAxisRange = [-5 5];
|
|
ZAxisRange = [-5 5];
|
|
Plotter.visualizeMagneticField(MOT2D, XAxisRange, YAxisRange, ZAxisRange)
|
|
|
|
%% - Plot MFP & VP for different temperatures
|
|
TemperatureinCelsius = linspace(750,1100,2000); % Temperature in Celsius
|
|
Plotter.plotMeanFreePathAndVapourPressureVsTemp(TemperatureinCelsius)
|
|
|
|
%% - Plot the Free Molecular Flux for different temperatures
|
|
Temperature = [950, 1000, 1050]; % Temperature
|
|
Plotter.plotFreeMolecularFluxVsTemp(Oven,Temperature)
|
|
|
|
%% - Plot Angular Distribution for different Beta
|
|
Beta = [0.5, 0.1 , 0.05, 0.02, 0.01]; %Beta = 2 * radius / length of the tube
|
|
Plotter.plotAngularDistributionForDifferentBeta(Oven, Beta)
|
|
|
|
%% - Plot Capture Velocity
|
|
Plotter.plotCaptureVelocityVsAngle(Oven, MOT2D); % Takes a long time to plot!
|
|
|
|
%% - Plot Phase Space with Acceleration Field
|
|
MOT2D.SidebandBeam = true;
|
|
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
|
|
CoolingBeam.Power = 0.2;
|
|
CoolingBeam.Detuning = -1.67*Helper.PhysicsConstants.BlueLinewidth;
|
|
SidebandBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'BlueSideband'), Beams)};
|
|
SidebandBeam.Power = 0.2;
|
|
SidebandBeam.Detuning = -3.35*Helper.PhysicsConstants.BlueLinewidth;
|
|
MOT2D.NumberOfAtoms = 50;
|
|
MinimumVelocity = 0;
|
|
MaximumVelocity = 150;
|
|
NumberOfBins = 200; %Along each axis
|
|
IncidentAtomDirection = 0*2*pi/360;
|
|
IncidentAtomPosition = 0;
|
|
Plotter.plotPhaseSpaceWithAccelerationField(Oven, MOT2D, MinimumVelocity, MaximumVelocity, NumberOfBins, IncidentAtomDirection, IncidentAtomPosition)
|
|
|
|
%% - Plot Trajectories along the 3 directions
|
|
MOT2D.NumberOfAtoms = 100;
|
|
MaximumVelocity = 150;
|
|
IncidentAtomDirection = 0*2*pi/360;
|
|
IncidentAtomPosition = 0;
|
|
|
|
%% - Positions
|
|
Plotter.plotDynamicalQuantities(Oven, MOT2D, MaximumVelocity, IncidentAtomDirection, IncidentAtomPosition, 'PlotPositions', true);
|
|
|
|
%% - Velocities
|
|
Plotter.plotDynamicalQuantities(Oven, MOT2D, MaximumVelocity, IncidentAtomDirection, IncidentAtomPosition, 'PlotVelocities', true);
|
|
|
|
%% - Scan parameters: One-Parameter Scan
|
|
|
|
MOT2D.NumberOfAtoms = 5000;
|
|
MOT2D.TotalPower = 0.4;
|
|
NumberOfPointsForFirstParam = 5; %iterations of the simulation
|
|
ParameterArray = linspace(0.1, 1.0, NumberOfPointsForFirstParam) * MOT2D.TotalPower;
|
|
|
|
tStart = tic;
|
|
[LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = Simulator.Scan.doOneParameter(Oven, MOT2D, 'Blue', 'Power', ParameterArray);
|
|
tEnd = toc(tStart);
|
|
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
|
|
|
|
% - Plot results
|
|
|
|
OptionsStruct = struct;
|
|
OptionsStruct.RescalingFactorForParameter = 1000;
|
|
OptionsStruct.XLabelString = 'Cooling Beam Power (mW)';
|
|
OptionsStruct.RescalingFactorForYQuantity = 1e-10;
|
|
OptionsStruct.ErrorsForYQuantity = true;
|
|
OptionsStruct.ErrorsArray = StandardErrorArray;
|
|
OptionsStruct.CIForYQuantity = true;
|
|
OptionsStruct.CIArray = ConfidenceIntervalArray;
|
|
OptionsStruct.RemoveOutliers = true;
|
|
OptionsStruct.YLabelString = 'Loading rate (x 10^{10} atoms/s)';
|
|
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
|
|
|
|
options = Helper.convertstruct2cell(OptionsStruct);
|
|
|
|
Plotter.plotResultForOneParameterScan(ParameterArray, LoadingRateArray, options{:})
|
|
|
|
clear OptionsStruct
|
|
|
|
%% - Scan parameters: Two-Parameter Scan
|
|
|
|
% COOLING BEAM POWER VS DETUNING
|
|
|
|
MOT2D.NumberOfAtoms = 5000;
|
|
MOT2D.TotalPower = 0.6;
|
|
NumberOfPointsForFirstParam = 10; %iterations of the simulation
|
|
NumberOfPointsForSecondParam = 10;
|
|
FirstParameterArray = linspace(-0.5, -2.5, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth;
|
|
SecondParameterArray = linspace(0.3, 1.0, NumberOfPointsForSecondParam) * MOT2D.TotalPower;
|
|
|
|
tStart = tic;
|
|
[LoadingRateArray, ~, ~] = Simulator.Scan.doTwoParameters(Oven, MOT2D, 'Blue', 'Detuning', FirstParameterArray, 'Power', SecondParameterArray);
|
|
tEnd = toc(tStart);
|
|
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
|
|
|
|
% - Plot results
|
|
|
|
OptionsStruct = struct;
|
|
OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.BlueLinewidth)^-1;
|
|
OptionsStruct.XLabelString = 'Cooling Beam Detuning (\Delta/\Gamma)';
|
|
OptionsStruct.RescalingFactorForSecondParameter = 1000;
|
|
OptionsStruct.YLabelString = 'Cooling Beam Power (mW)';
|
|
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-9;
|
|
OptionsStruct.ZLabelString = 'Loading rate (x 10^{9} atoms/s)';
|
|
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
|
|
|
|
options = Helper.convertstruct2cell(OptionsStruct);
|
|
|
|
Plotter.plotResultForTwoParameterScan(FirstParameterArray, SecondParameterArray, LoadingRateArray, options{:})
|
|
|
|
clear OptionsStruct
|
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
% COOLING BEAM WAIST VS DETUNING
|
|
|
|
MOT2D.NumberOfAtoms = 5000;
|
|
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
|
|
CoolingBeam.Power = 0.4;
|
|
NumberOfPointsForFirstParam = 10; %iterations of the simulation
|
|
NumberOfPointsForSecondParam = 10;
|
|
FirstParameterArray = linspace(-0.5, -2.0, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth;
|
|
SecondParameterArray = linspace(10, 25, NumberOfPointsForSecondParam) * 1e-03;
|
|
|
|
tStart = tic;
|
|
[LoadingRateArray, ~, ~] = Simulator.Scan.doTwoParameters(Oven, MOT2D, 'Blue', 'Detuning', FirstParameterArray, 'Waist', SecondParameterArray);
|
|
tEnd = toc(tStart);
|
|
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
|
|
|
|
% - Plot results
|
|
|
|
OptionsStruct = struct;
|
|
OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.BlueLinewidth)^-1;
|
|
OptionsStruct.XLabelString = 'Cooling Beam Detuning (\Delta/\Gamma)';
|
|
OptionsStruct.RescalingFactorForSecondParameter = 1000;
|
|
OptionsStruct.YLabelString = 'Cooling Beam Waist (mm)';
|
|
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-9;
|
|
OptionsStruct.ZLabelString = 'Loading rate (x 10^{9} atoms/s)';
|
|
OptionsStruct.TitleString = sprintf('Cooling Beam Power = %d (mW); Magnetic Gradient = %.0f (G/cm)', CoolingBeam.Power*1000, MOT2D.MagneticGradient * 100);
|
|
|
|
options = Helper.convertstruct2cell(OptionsStruct);
|
|
|
|
Plotter.plotResultForTwoParameterScan(FirstParameterArray, SecondParameterArray, LoadingRateArray, options{:})
|
|
|
|
clear OptionsStruct
|
|
|
|
%% - Scan parameters: Three-Parameter Scan
|
|
|
|
% COOLING BEAM WAIST VS DETUNING FOR DIFFERENT MAGNETIC FIELD GRADIENTS
|
|
|
|
MOT2D.NumberOfAtoms = 5000;
|
|
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
|
|
CoolingBeam.Power = 0.4;
|
|
NumberOfPointsForFirstParam = 10; %iterations of the simulation
|
|
NumberOfPointsForSecondParam = 10;
|
|
NumberOfPointsForThirdParam = 6;
|
|
FirstParameterArray = linspace(-0.5, -2.0, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth;
|
|
SecondParameterArray = linspace(10, 25, NumberOfPointsForSecondParam) * 1e-03;
|
|
ThirdParameterArray = linspace(30, 50, NumberOfPointsForThirdParam) * 1e-02;
|
|
|
|
tStart = tic;
|
|
LoadingRateArray = Simulator.Scan.doThreeParameters(Oven, MOT2D, 'Blue', 'Detuning', FirstParameterArray, ...
|
|
'Waist', SecondParameterArray, ...
|
|
'MagneticGradient', ThirdParameterArray);
|
|
tEnd = toc(tStart);
|
|
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
|
|
|
|
% - Plot results
|
|
|
|
OptionsStruct = struct;
|
|
OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.BlueLinewidth)^-1;
|
|
OptionsStruct.XLabelString = 'Cooling Beam Detuning (\Delta/\Gamma)';
|
|
OptionsStruct.RescalingFactorForSecondParameter = 1000;
|
|
OptionsStruct.YLabelString = 'Cooling Beam Waist (mm)';
|
|
OptionsStruct.RescalingFactorForThirdParameter = 100;
|
|
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-9;
|
|
OptionsStruct.ZLabelString = 'Loading rate (x 10^{9} atoms/s)';
|
|
OptionsStruct.PlotTitleString = 'Magnetic Gradient = %.0f (G/cm)';
|
|
OptionsStruct.FigureTitleString = sprintf('Oven-2DMOT Distance = %.1f (mm); Cooling Beam Power = %d (mW)', Oven.OvenDistance * 1000, CoolingBeam.Power*1000);
|
|
|
|
options = Helper.convertstruct2cell(OptionsStruct);
|
|
|
|
Plotter.plotResultForThreeParameterScan(FirstParameterArray, SecondParameterArray, ThirdParameterArray, LoadingRateArray, options{:})
|
|
|
|
clear OptionsStruct |