Calculations/+Simulator/@TwoDimensionalMOT/bootstrapErrorEstimation.m

39 lines
2.0 KiB
Matlab

function [LoadingRate, StandardError, ConfidenceInterval] = bootstrapErrorEstimation(this, ovenObj, NumberOfLoadedAtoms)
n = this.NumberOfAtoms;
NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep);
Autocorrelation = autocorr(NumberOfLoadedAtoms,'NumLags', double(NumberOfTimeSteps - 1));
if Autocorrelation(1)~=0
CorrelationFactor = table(Helper.findAllZeroCrossings(linspace(1, double(NumberOfTimeSteps), double(NumberOfTimeSteps)), Autocorrelation)).Var1(1);
if ~isnan(CorrelationFactor)
SampleLength = floor(CorrelationFactor);
NumberOfBootsrapSamples = 1000;
MeanCaptureRatioInEachSample = zeros(1,NumberOfBootsrapSamples);
for SampleNumber = 1:NumberOfBootsrapSamples
BoostrapSample = datasample(NumberOfLoadedAtoms, SampleLength); % Sample with replacement
MeanCaptureRatioInEachSample(SampleNumber) = mean(BoostrapSample) / n; % Empirical bootstrap distribution of sample means
end
LoadingRate = mean(MeanCaptureRatioInEachSample) * ovenObj.ReducedFlux;
Variance = 0; % Bootstrap Estimate of Variance
for SampleNumber = 1:NumberOfBootsrapSamples
Variance = Variance + (MeanCaptureRatioInEachSample(SampleNumber) - mean(MeanCaptureRatioInEachSample))^2;
end
StandardError = sqrt((1 / (NumberOfBootsrapSamples-1)) * Variance) * ovenObj.ReducedFlux;
ts = tinv([0.025 0.975],NumberOfBootsrapSamples-1); % T-Score
ConfidenceInterval = LoadingRate + ts*StandardError; % 95% Confidence Intervals
else
LoadingRate = nan;
StandardError = nan;
ConfidenceInterval = [nan nan];
end
else
LoadingRate = nan;
StandardError = nan;
ConfidenceInterval = [nan nan];
end
end