167 lines
5.8 KiB
Matlab
167 lines
5.8 KiB
Matlab
function plotSecondaryGaussianRange(fitResults, scanValues, varargin)
|
||
%% plotSecondaryGaussianRange
|
||
% Plots secondary Gaussian ranges (mu2 ± sigma2) in a heatmap style
|
||
% exactly like plotFitParameterPDF, with dashed lines for distribution
|
||
% edges and solid line for mean mu2.
|
||
|
||
% --- Parse optional inputs ---
|
||
p = inputParser;
|
||
addParameter(p, 'Title', '', @(x) ischar(x) || isstring(x));
|
||
addParameter(p, 'XLabel', '', @(x) ischar(x) || isstring(x));
|
||
addParameter(p, 'YLabel', '', @(x) ischar(x) || isstring(x));
|
||
addParameter(p, 'FigNum', 1, @(x) isscalar(x));
|
||
addParameter(p, 'FontName', 'Arial', @ischar);
|
||
addParameter(p, 'FontSize', 14, @isnumeric);
|
||
addParameter(p, 'SkipSaveFigures', false, @islogical);
|
||
addParameter(p, 'SaveFileName', 'SecondaryGaussianRange.fig', @ischar);
|
||
addParameter(p, 'SaveDirectory', pwd, @ischar);
|
||
addParameter(p, 'NumPoints', 200, @(x) isscalar(x));
|
||
addParameter(p, 'DataRange', [], @(x) isempty(x) || numel(x)==2);
|
||
addParameter(p, 'XLim', [], @(x) isempty(x) || numel(x)==2);
|
||
addParameter(p, 'YLim', [], @(x) isempty(x) || numel(x)==2);
|
||
addParameter(p, 'Colormap', @jet);
|
||
addParameter(p, 'PlotType', 'histogram', @(x) any(validatestring(x,{'kde','histogram'})));
|
||
addParameter(p, 'NumberOfBins', 50, @isscalar);
|
||
addParameter(p, 'NormalizeHistogram', true, @islogical);
|
||
addParameter(p, 'OverlayMeanSEM', true, @islogical);
|
||
parse(p, varargin{:});
|
||
opts = p.Results;
|
||
|
||
% --- Determine repetitions and scan parameters ---
|
||
N_params = numel(scanValues);
|
||
N_total = numel(fitResults);
|
||
N_reps = N_total / N_params;
|
||
|
||
% --- Extract mu2 and sigma2 ---
|
||
mu2_values = nan(N_reps, N_params);
|
||
sigma2_values = nan(N_reps, N_params);
|
||
for k = 1:N_total
|
||
paramIdxScan = mod(k-1, N_params) + 1;
|
||
repIdx = floor((k-1)/N_params) + 1;
|
||
mu2_values(repIdx, paramIdxScan) = fitResults(k).pFit(5);
|
||
sigma2_values(repIdx, paramIdxScan) = fitResults(k).pFit(6);
|
||
end
|
||
|
||
% --- Mask invalid fits ---
|
||
for i = 1:N_total
|
||
paramIdxScan = mod(i-1, N_params) + 1;
|
||
repIdx = floor((i-1)/N_params) + 1;
|
||
if ~fitResults(i).isValid && all(fitResults(i).pFit == 0)
|
||
mu2_values(repIdx, paramIdxScan) = NaN;
|
||
sigma2_values(repIdx, paramIdxScan) = NaN;
|
||
end
|
||
end
|
||
|
||
% --- Compute lower and upper bounds ---
|
||
lowerBound = mu2_values - sigma2_values;
|
||
upperBound = mu2_values + sigma2_values;
|
||
|
||
% Define how much to trim (e.g., 2% on each side)
|
||
trimFraction = 0.01; % can tune this (0.01–0.05 typical)
|
||
|
||
% Compute robust global limits
|
||
globalLower = quantile(lowerBound(:), trimFraction);
|
||
globalUpper = quantile(upperBound(:), 1 - trimFraction);
|
||
|
||
fprintf('Global lower bound (%.0f%%): %.4f\n', trimFraction*100, globalLower);
|
||
fprintf('Global upper bound (%.0f%%): %.4f\n', (1-trimFraction)*100, globalUpper);
|
||
|
||
% --- Prepare data per scan parameter ---
|
||
dataCell = cell(N_params,1);
|
||
for i = 1:N_params
|
||
combinedData = [];
|
||
for j = 1:N_reps
|
||
if ~isnan(mu2_values(j,i)) && ~isnan(sigma2_values(j,i))
|
||
combinedData = [combinedData; linspace(lowerBound(j,i), upperBound(j,i), 3)']; %#ok<AGROW>
|
||
end
|
||
end
|
||
dataCell{i} = combinedData;
|
||
end
|
||
|
||
% --- Determine y-range ---
|
||
if isempty(opts.DataRange)
|
||
allData = cell2mat(dataCell(:));
|
||
y_min = min(allData);
|
||
y_max = max(allData);
|
||
else
|
||
y_min = opts.DataRange(1);
|
||
y_max = opts.DataRange(2);
|
||
end
|
||
|
||
% --- Prepare PDF matrix ---
|
||
if strcmpi(opts.PlotType,'kde')
|
||
y_grid = linspace(y_min, y_max, opts.NumPoints);
|
||
pdf_matrix = zeros(numel(y_grid), N_params);
|
||
for i = 1:N_params
|
||
data = dataCell{i};
|
||
if isempty(data), continue; end
|
||
pdf_matrix(:,i) = ksdensity(data, y_grid);
|
||
end
|
||
else
|
||
edges = linspace(y_min, y_max, opts.NumberOfBins+1);
|
||
binCenters = (edges(1:end-1)+edges(2:end))/2;
|
||
pdf_matrix = zeros(numel(binCenters), N_params);
|
||
for i = 1:N_params
|
||
data = dataCell{i};
|
||
if isempty(data), continue; end
|
||
counts = histcounts(data, edges);
|
||
if opts.NormalizeHistogram
|
||
counts = counts / sum(counts);
|
||
end
|
||
pdf_matrix(:,i) = counts(:);
|
||
end
|
||
end
|
||
|
||
% --- Mask out non-data regions ---
|
||
maskPerScan = cellfun(@(c) ~isempty(c), dataCell);
|
||
pdf_matrix(:, ~maskPerScan) = NaN;
|
||
|
||
% --- Plot heatmap ---
|
||
fig = figure(opts.FigNum); clf(fig);
|
||
set(fig, 'Color', 'w', 'Position', [100 100 950 750]);
|
||
|
||
if strcmpi(opts.PlotType,'kde')
|
||
h = imagesc(scanValues, y_grid, pdf_matrix);
|
||
set(h, 'AlphaData', ~isnan(pdf_matrix));
|
||
else
|
||
h = imagesc(scanValues, binCenters, pdf_matrix);
|
||
set(h, 'AlphaData', ~isnan(pdf_matrix));
|
||
end
|
||
|
||
colormap([1 1 1; feval(opts.Colormap)]); % white for NaNs
|
||
c = colorbar;
|
||
ylabel(c, 'Probability Density', 'Rotation', -90, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
|
||
|
||
set(gca, 'YDir','normal', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
|
||
xlabel(opts.XLabel, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
|
||
ylabel(opts.YLabel, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
|
||
title(opts.Title, 'FontName', opts.FontName, 'FontSize', opts.FontSize+2, 'FontWeight','bold');
|
||
grid on; hold on;
|
||
|
||
% --- Overlay mu2 and distribution edges ---
|
||
meanMu2 = nanmean(mu2_values,1);
|
||
minLower = min(lowerBound,[],1);
|
||
maxUpper = max(upperBound,[],1);
|
||
|
||
plot(scanValues, meanMu2, 'k-', 'LineWidth', 2); % solid mu2
|
||
plot(scanValues, minLower, 'k--', 'LineWidth', 1.5); % dashed lower edge
|
||
plot(scanValues, maxUpper, 'k--', 'LineWidth', 1.5); % dashed upper edge
|
||
|
||
% --- Overlay mean ± SEM if requested ---
|
||
if opts.OverlayMeanSEM
|
||
semMu2 = nanstd(mu2_values,0,1) ./ sqrt(sum(~isnan(mu2_values),1));
|
||
xVec = reshape(scanValues,1,[]);
|
||
fill([xVec, fliplr(xVec)], [meanMu2 - semMu2, fliplr(meanMu2 + semMu2)], ...
|
||
[0.2 0.4 0.8], 'FaceAlpha',0.2, 'EdgeColor','none');
|
||
end
|
||
|
||
% --- Apply axis limits if specified ---
|
||
if ~isempty(opts.XLim)
|
||
xlim(opts.XLim);
|
||
end
|
||
if ~isempty(opts.YLim)
|
||
ylim(opts.YLim);
|
||
end
|
||
|
||
end
|