Calculations/test_MOTCaptureProcessSimulation.m

419 lines
18 KiB
Matlab

%% This script is testing the functionalities of the MOT Capture Process Simulation Classes
%
% Important: Run only sectionwise!!
%% - Testing the MOTCaptureProcess-Class
% - Create MOTCaptureProcess object with specified options
% - Automatically creates Beams objects
OptionsStruct = struct;
OptionsStruct.ErrorEstimationMethod = 'bootstrap'; % 'jackknife' | 'bootstrap'
OptionsStruct.NumberOfAtoms = 5000;
OptionsStruct.TimeStep = 50e-06; % in s
OptionsStruct.SimulationTime = 4e-03; % in s
OptionsStruct.SpontaneousEmission = true;
OptionsStruct.SidebandBeam = true;
OptionsStruct.PushBeam = true;
OptionsStruct.Gravity = true;
OptionsStruct.BackgroundCollision = true;
OptionsStruct.SaveData = true;
% OptionsStruct.SaveDirectory = '';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
Oven = Simulator.Oven(options{:});
MOT2D = Simulator.TwoDimensionalMOT(options{:});
Beams = MOT2D.Beams;
%% - Run Simulation
MOT2D.NumberOfAtoms = 5000;
MOT2D.SidebandBeam = true;
MOT2D.PushBeam = false;
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
CoolingBeam.Power = 0.2;
CoolingBeam.Waist = 16.67e-03;
CoolingBeam.Detuning = -1.33*Helper.PhysicsConstants.BlueLinewidth;
SidebandBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'BlueSideband'), Beams)};
SidebandBeam.Power = 0.4;
SidebandBeam.Waist = 16.67e-03;
SidebandBeam.Detuning = -2.66*Helper.PhysicsConstants.BlueLinewidth;
PushBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Push'), Beams)};
PushBeam.Power = 0.025;
PushBeam.Waist = 0.81e-03;
PushBeam.Detuning = 0;
[LoadingRate, ~] = MOT2D.runSimulation(Oven);
%% - Plot initial distribution
% - sampling the position distribution
InitialPositions = Oven.initialPositionSampling();
% - sampling the velocity distribution
InitialVelocities = Oven.initialVelocitySampling(MOT2D);
NumberOfBins = 100;
Plotter.plotPositionAndVelocitySampling(NumberOfBins, InitialPositions, InitialVelocities);
%% - Plot distributions of magnitude and direction of initial velocities
NumberOfBins = 50;
Plotter.plotInitialVeloctiySamplingVsAngle(Oven, MOT2D, NumberOfBins)
%% - Plot Magnetic Field
XAxisRange = [-5 5];
YAxisRange = [-5 5];
ZAxisRange = [-5 5];
Plotter.visualizeMagneticField(MOT2D, XAxisRange, YAxisRange, ZAxisRange)
%% - Plot MFP & VP for different temperatures
TemperatureinCelsius = linspace(750,1100,2000); % Temperature in Celsius
Plotter.plotMeanFreePathAndVapourPressureVsTemp(TemperatureinCelsius)
%% - Plot the Free Molecular Flux for different temperatures
Temperature = [950, 1000, 1050]; % Temperature
Plotter.plotFreeMolecularFluxVsTemp(Oven,Temperature)
%% - Plot Angular Distribution for different Beta
Beta = [0.5, 0.1 , 0.05, 0.02, 0.01]; %Beta = 2 * radius / length of the tube
Plotter.plotAngularDistributionForDifferentBeta(Oven, Beta)
%% - Plot Capture Velocity
Plotter.plotCaptureVelocityVsAngle(Oven, MOT2D); % Takes a long time to plot!
%% - Plot Phase Space with Acceleration Field
MOT2D.SidebandBeam = false;
MOT2D.MagneticGradient = 0.4;
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
CoolingBeam.Power = 0.3;
CoolingBeam.Detuning = -1.64*Helper.PhysicsConstants.BlueLinewidth;
CoolingBeam.Waist = 15e-03;
SidebandBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'BlueSideband'), Beams)};
SidebandBeam.Power = 0.5;
SidebandBeam.Detuning = -4*Helper.PhysicsConstants.BlueLinewidth;
SidebandBeam.Waist = 15e-03;
MOT2D.NumberOfAtoms = 50;
MinimumVelocity = 0;
MaximumVelocity = 150;
NumberOfBins = 200; %Along each axis
IncidentAtomDirection = 0*2*pi/360;
IncidentAtomPosition = 0;
Plotter.plotPhaseSpaceWithAccelerationField(Oven, MOT2D, MinimumVelocity, MaximumVelocity, NumberOfBins, IncidentAtomDirection, IncidentAtomPosition)
%% - Plot Trajectories along the 3 directions
MOT2D.NumberOfAtoms = 100;
MOT2D.MagneticGradient = 0.42;
MaximumVelocity = 150;
IncidentAtomDirection = 0*2*pi/360;
IncidentAtomPosition = 0;
%% - Positions
Plotter.plotDynamicalQuantities(Oven, MOT2D, MaximumVelocity, IncidentAtomDirection, IncidentAtomPosition, 'PlotPositions', true);
%% - Velocities
Plotter.plotDynamicalQuantities(Oven, MOT2D, MaximumVelocity, IncidentAtomDirection, IncidentAtomPosition, 'PlotVelocities', true);
%% - Scan parameters: One-Parameter Scan
MOT2D.NumberOfAtoms = 5000;
MOT2D.TotalPower = 0.4;
MOT2D.SidebandBeam = false;
MOT2D.PushBeam = false;
NumberOfPointsForFirstParam = 5; %iterations of the simulation
ParameterArray = linspace(0.1, 1.0, NumberOfPointsForFirstParam) * MOT2D.TotalPower;
tStart = tic;
[LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = Simulator.Scan.doOneParameter(Oven, MOT2D, 'Blue', 'Power', ParameterArray);
tEnd = toc(tStart);
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
% - Plot results
OptionsStruct = struct;
OptionsStruct.RescalingFactorForParameter = 1000;
OptionsStruct.XLabelString = 'Cooling Beam Power (mW)';
OptionsStruct.RescalingFactorForYQuantity = 1e-10;
OptionsStruct.ErrorsForYQuantity = true;
OptionsStruct.ErrorsArray = StandardErrorArray;
OptionsStruct.CIForYQuantity = true;
OptionsStruct.CIArray = ConfidenceIntervalArray;
OptionsStruct.RemoveOutliers = true;
OptionsStruct.YLabelString = 'Loading rate (x 10^{10} atoms/s)';
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
options = Helper.convertstruct2cell(OptionsStruct);
Plotter.plotResultForOneParameterScan(ParameterArray, LoadingRateArray, options{:})
clear OptionsStruct
%% - Scan parameters: One-Parameter Scan
MOT2D.NumberOfAtoms = 10000;
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
CoolingBeam.Power = 0.4;
MOT2D.SidebandBeam = false;
MOT2D.PushBeam = false;
% ParameterArray = [10 20 30 40 50 60 70 80 90 100];
ParameterArray = [500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500];
NumberOfPointsForParam = length(ParameterArray); %iterations of the simulation
LoadingRateArray = zeros(1,NumberOfPointsForParam);
StandardErrorArray = zeros(1,NumberOfPointsForParam);
ConfidenceIntervalArray = zeros(NumberOfPointsForParam, 2);
tStart = tic;
for i=1:NumberOfPointsForParam
MOT2D.BootstrapSampleLength = ParameterArray(i);
[LoadingRateArray(i), StandardErrorArray(i), ConfidenceIntervalArray(i,:)] = MOT2D.runSimulation(Oven);
end
tEnd = toc(tStart);
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
% - Plot results
OptionsStruct = struct;
OptionsStruct.RescalingFactorForParameter = 1;
OptionsStruct.XLabelString = 'Bootstrap Sample Length';
OptionsStruct.RescalingFactorForYQuantity = 1e-10;
OptionsStruct.ErrorsForYQuantity = true;
OptionsStruct.ErrorsArray = StandardErrorArray;
OptionsStruct.CIForYQuantity = true;
OptionsStruct.CIArray = ConfidenceIntervalArray;
OptionsStruct.RemoveOutliers = false;
OptionsStruct.YLabelString = 'Loading rate (x 10^{10} atoms/s)';
OptionsStruct.TitleString = sprintf('Cooling Beam Power = %d (mW); Magnetic Gradient = %.0f (G/cm)', CoolingBeam.Power*1000, MOT2D.MagneticGradient * 100);
options = Helper.convertstruct2cell(OptionsStruct);
Plotter.plotResultForOneParameterScan(ParameterArray, LoadingRateArray, options{:})
MeanLR = mean(LoadingRateArray(:)) * 1e-10;
yline(MeanLR, 'LineStyle', '--', 'Linewidth', 2.5)
textstring = [sprintf('%1.2e', MeanLR * 1e+10) ' atoms'];
% txt = text((ParameterArray(2) + 0.05*ParameterArray(2)), (max(MeanLR) + 0.05*MeanLR), textstring, 'Interpreter','latex', 'FontSize', 14);
% xlim([0 100])
ylim([0 3.5])
clear OptionsStruct
%% - Scan parameters: Two-Parameter Scan
% COOLING BEAM POWER VS DETUNING
MOT2D.NumberOfAtoms = 5000;
MOT2D.TotalPower = 0.6;
NumberOfPointsForFirstParam = 10; %iterations of the simulation
NumberOfPointsForSecondParam = 10;
FirstParameterArray = linspace(-0.5, -2.5, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth;
SecondParameterArray = linspace(0.3, 1.0, NumberOfPointsForSecondParam) * MOT2D.TotalPower;
tStart = tic;
[LoadingRateArray, ~, ~] = Simulator.Scan.doTwoParameters(Oven, MOT2D, 'Blue', 'Detuning', FirstParameterArray, 'Power', SecondParameterArray);
tEnd = toc(tStart);
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
% - Plot results
OptionsStruct = struct;
OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.BlueLinewidth)^-1;
OptionsStruct.XLabelString = 'Cooling Beam Detuning (\Delta/\Gamma)';
OptionsStruct.RescalingFactorForSecondParameter = 1000;
OptionsStruct.YLabelString = 'Cooling Beam Power (mW)';
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-9;
OptionsStruct.ZLabelString = 'Loading rate (x 10^{9} atoms/s)';
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
options = Helper.convertstruct2cell(OptionsStruct);
Plotter.plotResultForTwoParameterScan(FirstParameterArray, SecondParameterArray, LoadingRateArray, options{:})
clear OptionsStruct
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% COOLING BEAM WAIST VS DETUNING
MOT2D.NumberOfAtoms = 20000;
MOT2D.MagneticGradient = 0.38;
MOT2D.SidebandBeam = false;
MOT2D.PushBeam = false;
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
CoolingBeam.Power = 0.4;
NumberOfPointsForFirstParam = 10; %iterations of the simulation
NumberOfPointsForSecondParam = 10;
FirstParameterArray = linspace(-0.5, -2.0, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth;
SecondParameterArray = linspace(10, 25, NumberOfPointsForSecondParam) * 1e-03;
tStart = tic;
[LoadingRateArray, ~, ~] = Simulator.Scan.doTwoParameters(Oven, MOT2D, 'Blue', 'Detuning', FirstParameterArray, 'Waist', SecondParameterArray);
tEnd = toc(tStart);
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
% - Plot results
OptionsStruct = struct;
OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.BlueLinewidth)^-1;
OptionsStruct.XLabelString = 'Cooling Beam Detuning (\Delta/\Gamma)';
OptionsStruct.RescalingFactorForSecondParameter = 1000;
OptionsStruct.YLabelString = 'Cooling Beam Waist (mm)';
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-9;
OptionsStruct.ZLabelString = 'Loading rate (x 10^{9} atoms/s)';
OptionsStruct.TitleString = sprintf('Cooling Beam Power = %d (mW); Magnetic Gradient = %.0f (G/cm)', CoolingBeam.Power*1000, MOT2D.MagneticGradient * 100);
options = Helper.convertstruct2cell(OptionsStruct);
Plotter.plotResultForTwoParameterScan(FirstParameterArray, SecondParameterArray, LoadingRateArray, options{:})
clear OptionsStruct
%% - Scan parameters: Three-Parameter Scan
% COOLING BEAM WAIST VS DETUNING FOR DIFFERENT MAGNETIC FIELD GRADIENTS
MOT2D.NumberOfAtoms = 10000;
MOT2D.SidebandBeam = false;
MOT2D.PushBeam = false;
MOT2D.BackgroundCollision = false;
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
CoolingBeam.Power = 0.4;
NumberOfPointsForFirstParam = 10; %iterations of the simulation
NumberOfPointsForSecondParam = 10;
NumberOfPointsForThirdParam = 6;
FirstParameterArray = linspace(-0.5, -2.0, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth;
SecondParameterArray = linspace(10, 25, NumberOfPointsForSecondParam) * 1e-03;
ThirdParameterArray = linspace(30, 50, NumberOfPointsForThirdParam) * 1e-02;
MOT2D.BootstrapSampleLength = 500;
tStart = tic;
LoadingRateArray = Simulator.Scan.doThreeParameters(Oven, MOT2D, 'Blue', 'Detuning', FirstParameterArray, ...
'Waist', SecondParameterArray, ...
'MagneticGradient', ThirdParameterArray);
tEnd = toc(tStart);
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
% - Plot results
OptionsStruct = struct;
OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.BlueLinewidth)^-1;
OptionsStruct.XLabelString = 'Cooling Beam Detuning (\Delta/\Gamma)';
OptionsStruct.RescalingFactorForSecondParameter = 1000;
OptionsStruct.YLabelString = 'Cooling Beam Waist (mm)';
OptionsStruct.RescalingFactorForThirdParameter = 100;
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-9;
OptionsStruct.ZLabelString = 'Loading rate (x 10^{9} atoms/s)';
OptionsStruct.PlotTitleString = 'Magnetic Gradient = %.0f (G/cm)';
OptionsStruct.FigureTitleString = sprintf('Oven-2DMOT Distance = %.1f (mm); Cooling Beam Power = %d (mW)', Oven.OvenDistance * 1000, CoolingBeam.Power*1000);
options = Helper.convertstruct2cell(OptionsStruct);
Plotter.plotResultForThreeParameterScan(FirstParameterArray, SecondParameterArray, ThirdParameterArray, LoadingRateArray, options{:})
clear OptionsStruct
%% Local Saturation Intensity distribution
WaveVectorEndPoint = zeros(2,3);
WaveVectorEndPoint(1,:) = [1,0,1];
WaveVectorEndPoint(1,:) = WaveVectorEndPoint(1,1:3)/norm(WaveVectorEndPoint(1,:));
WaveVectorEndPoint(2,:) = [-1,0,1];
WaveVectorEndPoint(2,:) = WaveVectorEndPoint(2,1:3)/norm(WaveVectorEndPoint(2,:));
Origin = [0,0,0];
BeamNumber = 2; %Selects one of the two wave vectors defined above
BeamRadius = 17.5e-03;
BeamWaist = 15e-03;
Power = 0.4;
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
SaturationIntensity = CoolingBeam.SaturationIntensity;
SaturationParameter = 0.1 * (8 * Power) / (pi*BeamWaist^2 * SaturationIntensity); % two beams are reflected
n = 1000;
t = 2*pi*rand(n,1);
r = BeamRadius*sqrt(rand(n,1));
% xmin = -15e-03;
% xmax = 15e-03;
% x = xmin+rand(n,1)*(xmax-xmin);
x = r.*cos(t);
y = ones(n,1) * 2e-03;
z = r.*sin(t);
PositionVector = horzcat(x, y, z); %scatter3(zeros(n,1), y, z)
CoolingBeamLocalSaturationIntensity = @(x) MOT2D.calculateLocalSaturationIntensity(0.25 * SaturationParameter, x, Origin, WaveVectorEndPoint(BeamNumber,:), BeamRadius, BeamWaist);
IntensityProfile = zeros(n,1);
for i=1:n
IntensityProfile(i) = CoolingBeamLocalSaturationIntensity(PositionVector(i, :));
end
v = IntensityProfile; % Extract intensity value
rows = 100;
columns = 100;
Image = zeros(rows, columns);
for k = 1 : length(x)
row = ceil((x(k) - min(x)) * columns / (max(x) - min(x)));
column = ceil((z(k) - min(z)) * rows / (max(z) - min(z)));
if (row == 0)
row = 1;
end
if (column == 0)
column = 1;
end
Image(row, column) = v(k);
end
f_h = Helper.getFigureByTag('Intensity Profile');
set(groot,'CurrentFigure',f_h);
a_h = get(f_h, 'CurrentAxes');
if ~isempty(get(a_h, 'Children'))
clf(f_h);
end
f_h.Name = 'Intensity Profile';
f_h.Units = 'pixels';
set(0,'units','pixels');
screensize = get(0,'ScreenSize');
f_h.Position = [[screensize(3)/3.5 screensize(4)/3.5] 750 600];
imagesc(linspace(min(x),max(x),row) * 1e+03, linspace(min(z),max(z),column) * 1e+03, Image);
set(gca,'YDir','normal');
hXLabel = xlabel('x-direction (distance in mm)');
hYLabel = ylabel('z-direction (distance in mm)');
shading flat;
c = colorbar;
c.Label.String= 'Local Saturation Intensity';
c.Label.FontSize = 14;
hTitle = sgtitle('Intensity Distribution');
set([hXLabel, hYLabel] , ...
'FontSize' , 14 );
set( hTitle , ...
'FontSize' , 18 );
Helper.bringFiguresWithTagInForeground();
%% Beam Shape in Three dimensions
f_h = Helper.getFigureByTag('Intensity Profile');
set(groot,'CurrentFigure',f_h);
a_h = get(f_h, 'CurrentAxes');
if ~isempty(get(a_h, 'Children'))
clf(f_h);
end
f_h.Name = 'Intensity Profile';
f_h.Units = 'pixels';
set(0,'units','pixels');
screensize = get(0,'ScreenSize');
f_h.Position = [[screensize(3)/3.5 screensize(4)/3.5] 750 600];
[xq,zq] = meshgrid(linspace(-BeamWaist, BeamWaist, n), linspace(-BeamWaist, BeamWaist, n));
vq = griddata(x,z,v,xq,zq);
mesh(xq,zq,vq)
hold on
plot3(x,z,v,'o', 'MarkerSize', 1.5)
hXLabel = xlabel('x-direction (distance in mm)');
hYLabel = ylabel('z-direction (distance in mm)');
shading flat;
c = colorbar;
c.Label.String= 'Local Saturation Intensity';
c.Label.FontSize = 14;
hTitle = sgtitle('Intensity Distribution');
set([hXLabel, hYLabel] , ...
'FontSize' , 14 );
set( hTitle , ...
'FontSize' , 18 );
Helper.bringFiguresWithTagInForeground();