Calculations/Data-Analyzer/extractAutocorrelation.m
2025-05-31 03:08:23 +02:00

611 lines
22 KiB
Matlab

%% Parameters
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ...
"/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ...
"/images/Vertical_Axis_Camera/in_situ_absorption"];
folderPath = "E:/Data - Experiment/2025/05/22/";
run = '0078';
folderPath = strcat(folderPath, run);
cam = 5;
angle = 0;
center = [1375, 2020];
span = [200, 200];
fraction = [0.1, 0.1];
pixel_size = 5.86e-6;
removeFringes = false;
scan_parameter = 'rot_mag_fin_pol_angle';
% scan_parameter = 'rot_mag_field';
scan_parameter_text = 'Angle = ';
% scan_parameter_text = 'BField = ';
font = 'Bahnschrift';
skipPreprocessing = true;
skipMasking = true;
skipIntensityThresholding = true;
skipBinarization = true;
%% Compute OD image, rotate and extract ROI for analysis
% Get a list of all files in the folder with the desired file name pattern.
filePattern = fullfile(folderPath, '*.h5');
files = dir(filePattern);
refimages = zeros(span(1) + 1, span(2) + 1, length(files));
absimages = zeros(span(1) + 1, span(2) + 1, length(files));
for k = 1 : length(files)
baseFileName = files(k).name;
fullFileName = fullfile(files(k).folder, baseFileName);
fprintf(1, 'Now reading %s\n', fullFileName);
atm_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle));
bkg_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
dark_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)';
absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img), center, span), fraction)';
end
% Fringe removal
if removeFringes
optrefimages = removefringesInImage(absimages, refimages);
absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :);
nimgs = size(absimages_fringe_removed,3);
od_imgs = cell(1, nimgs);
for i = 1:nimgs
od_imgs{i} = absimages_fringe_removed(:, :, i);
end
else
nimgs = size(absimages(:, :, :),3);
od_imgs = cell(1, nimgs);
for i = 1:nimgs
od_imgs{i} = absimages(:, :, i);
end
end
%% Get rotation angles
scan_parameter_values = zeros(1, length(files));
% Get information about the '/globals' group
for k = 1 : length(files)
baseFileName = files(k).name;
fullFileName = fullfile(files(k).folder, baseFileName);
info = h5info(fullFileName, '/globals');
for i = 1:length(info.Attributes)
if strcmp(info.Attributes(i).Name, scan_parameter)
if strcmp(scan_parameter, 'rot_mag_fin_pol_angle')
scan_parameter_values(k) = 180 - info.Attributes(i).Value;
else
scan_parameter_values(k) = info.Attributes(i).Value;
end
end
end
end
%% Extract g2 from experiment data
fft_imgs = cell(1, nimgs);
spectral_distribution = cell(1, nimgs);
theta_values = cell(1, nimgs);
N_bins = 32;
Threshold = 75;
Sigma = 2;
N_shots = length(od_imgs);
% Display the cropped image
for k = 1:N_shots
IMG = od_imgs{k};
[IMGFFT, IMGPR] = computeFourierTransform(IMG, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization);
% Calculate the x and y limits for the cropped image
y_min = center(1) - span(2) / 2;
y_max = center(1) + span(2) / 2;
x_min = center(2) - span(1) / 2;
x_max = center(2) + span(1) / 2;
% Generate x and y arrays representing the original coordinates for each pixel
x_range = linspace(x_min, x_max, span(1));
y_range = linspace(y_min, y_max, span(2));
[rows, cols] = size(IMGFFT);
zoom_size = 50; % Zoomed-in region around center
mid_x = floor(cols/2);
mid_y = floor(rows/2);
fft_imgs{k} = IMGFFT(mid_y-zoom_size:mid_y+zoom_size, mid_x-zoom_size:mid_x+zoom_size);
[theta_vals, S_theta] = computeNormalizedAngularSpectralDistribution(fft_imgs{k}, 10, 20, N_bins, Threshold, Sigma);
spectral_distribution{k} = S_theta;
theta_values{k} = theta_vals;
end
% Create matrix of shape (N_shots x N_bins)
delta_nkr_all = zeros(N_shots, N_bins);
for k = 1:N_shots
delta_nkr_all(k, :) = spectral_distribution{k};
end
% Grouping by scan parameter value (e.g., alpha)
[unique_scan_parameter_values, ~, idx] = unique(scan_parameter_values);
% Number of unique alpha values
N_alpha = length(unique_scan_parameter_values);
% Preallocate result arrays
g2_all = zeros(N_alpha, N_bins);
g2_error_all = zeros(N_alpha, N_bins);
for i = 1:N_alpha
group_idx = find(idx == i); % Indices of 20 shots for this alpha
group_data = delta_nkr_all(group_idx, :); % (20 x N_bins) array
for dtheta = 0:N_bins-1
temp = zeros(length(group_idx), 1);
for j = 1:length(group_idx)
profile = group_data(j, :);
profile_shifted = circshift(profile, -dtheta, 2);
num = mean(profile .* profile_shifted);
denom = mean(profile)^2;
temp(j) = num / denom - 1;
end
g2_all(i, dtheta+1) = mean(temp);
g2_error_all(i, dtheta+1) = std(temp) / sqrt(length(group_idx)); % Standard error
end
end
% Reconstruct theta axis from any one of the stored values
theta_vals = theta_values{1}; % assuming it's in radians
% Number of unique alpha values
nAlpha = size(g2_all, 1);
% Generate a colormap with enough unique colors
cmap = sky(nAlpha); % You can also try 'jet', 'turbo', 'hot', etc.
figure(1);
clf;
set(gcf,'Position',[100 100 950 750])
hold on;
legend_entries = cell(nAlpha, 1);
for i = 1:nAlpha
errorbar(theta_vals/pi, g2_all(i, :), g2_error_all(i, :), ...
'o-', 'Color', cmap(i,:), 'LineWidth', 1.2, ...
'MarkerSize', 5, 'CapSize', 3);
legend_entries{i} = sprintf('$\\alpha = %g^\\circ$', unique_scan_parameter_values(i));
end
ylim([-1.5 3.0]); % Set y-axis limits here
set(gca, 'FontSize', 14);
hXLabel = xlabel('$\delta\theta / \pi$', 'Interpreter', 'latex');
hYLabel = ylabel('$g^{(2)}(\delta\theta)$', 'Interpreter', 'latex');
hTitle = title('B = 2.45 G - Droplets to Stripes', 'Interpreter', 'tex');
legend(legend_entries, 'Interpreter', 'latex', 'Location', 'bestoutside');
set([hXLabel, hYLabel], 'FontName', font)
set([hXLabel, hYLabel], 'FontSize', 14)
set(hTitle, 'FontName', font, 'FontSize', 16, 'FontWeight', 'bold'); % Set font and size for title
grid on;
%% Extract g2 from simulation data
Data = load('E:/Results - Numerics/Data_Full3D/PhaseDiagram/ImagTimePropagation/Theta0/HighN/aS_9.562000e+01_theta_000_phi_000_N_712500/Run_000/psi_gs.mat','psi','Params','Transf','Observ');
% Data = load('E:/Results - Numerics/Data_Full3D/PhaseDiagram/ImagTimePropagation/Theta40/HighN/aS_9.562000e+01_theta_040_phi_000_N_508333/Run_000/psi_gs.mat','psi','Params','Transf','Observ');
Params = Data.Params;
Transf = Data.Transf;
Observ = Data.Observ;
if isgpuarray(Data.psi)
psi = gather(Data.psi);
else
psi = Data.psi;
end
if isgpuarray(Data.Observ.residual)
Observ.residual = gather(Data.Observ.residual);
else
Observ.residual = Data.Observ.residual;
end
% Axes scaling and coordinates in micrometers
x = Transf.x * Params.l0 * 1e6;
y = Transf.y * Params.l0 * 1e6;
z = Transf.z * Params.l0 * 1e6;
dx = x(2)-x(1); dy = y(2)-y(1); dz = z(2)-z(1);
% Calculate frequency increment (frequency axes)
Nx = length(x); % grid size along X
Ny = length(y); % grid size along Y
dx = mean(diff(x)); % real space increment in the X direction (in micrometers)
dy = mean(diff(y)); % real space increment in the Y direction (in micrometers)
dvx = 1 / (Nx * dx); % reciprocal space increment in the X direction (in micrometers^-1)
dvy = 1 / (Ny * dy); % reciprocal space increment in the Y direction (in micrometers^-1)
% Create the frequency axes
vx = (-Nx/2:Nx/2-1) * dvx; % Frequency axis in X (micrometers^-1)
vy = (-Ny/2:Ny/2-1) * dvy; % Frequency axis in Y (micrometers^-1)
% Calculate maximum frequencies
% kx_max = pi / dx;
% ky_max = pi / dy;
% Generate reciprocal axes
% kx = linspace(-kx_max, kx_max * (Nx-2)/Nx, Nx);
% ky = linspace(-ky_max, ky_max * (Ny-2)/Ny, Ny);
% Create the Wavenumber axes
kx = 2*pi*vx; % Wavenumber axis in X
ky = 2*pi*vy; % Wavenumber axis in Y
% Compute probability density |psi|^2
n = abs(psi).^2;
nxz = squeeze(trapz(n*dy,2));
nyz = squeeze(trapz(n*dx,1));
nxy = squeeze(trapz(n*dz,3));
skipPreprocessing = true;
skipMasking = true;
skipIntensityThresholding = true;
skipBinarization = true;
font = 'Bahnschrift';
% Extract g2
N_bins = 90;
Threshold = 75;
Sigma = 2;
IMG = nxy;
[IMGFFT, IMGPR] = computeFourierTransform(IMG, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization);
[theta_vals, S_theta] = computeNormalizedAngularSpectralDistribution(IMGFFT, 10, 35, N_bins, Threshold, Sigma);
g2_all = zeros(1, N_bins); % Preallocate
for dtheta = 0:N_bins-1
profile = S_theta;
profile_shifted = circshift(profile, -dtheta, 2);
num = mean(profile .* profile_shifted);
denom = mean(profile)^2;
g2_all(dtheta+1) = num / denom - 1;
end
figure(2);
clf
set(gcf,'Position',[500 100 1000 800])
t = tiledlayout(2, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 1x4 grid
% Display the cropped OD image
nexttile
plotxy = pcolor(x,y,IMG');
set(plotxy, 'EdgeColor', 'none');
cbar1 = colorbar;
cbar1.Label.Interpreter = 'latex';
colormap(gca, Helper.Colormaps.plasma())
xlabel('$x$ ($\mu$m)', 'Interpreter', 'latex', 'FontSize', 14)
ylabel('$y$ ($\mu$m)', 'Interpreter', 'latex', 'FontSize', 14)
title('$|\Psi(x,y)|^2$', 'Interpreter', 'latex', 'FontSize', 14)
% Plot the power spectrum
nexttile;
imagesc(kx, ky, log(1 + abs(IMGFFT).^2));
axis square;
hcb = colorbar;
colormap(gca, Helper.Colormaps.plasma())
set(gca, 'FontSize', 14); % For tick labels only
set(gca,'YDir','normal')
hXLabel = xlabel('k_x', 'Interpreter', 'tex');
hYLabel = ylabel('k_y', 'Interpreter', 'tex');
hTitle = title('Power Spectrum - S(k_x,k_y)', 'Interpreter', 'tex');
set([hXLabel, hYLabel], 'FontName', font)
set([hXLabel, hYLabel], 'FontSize', 14)
set(hTitle, 'FontName', font, 'FontSize', 16, 'FontWeight', 'bold'); % Set font and size for title
% Plot the angular distribution
nexttile
plot(theta_vals/pi, S_theta,'Linewidth',2);
set(gca, 'FontSize', 14); % For tick labels only
hXLabel = xlabel('\theta/\pi [rad]', 'Interpreter', 'tex');
hYLabel = ylabel('Normalized magnitude (a.u.)', 'Interpreter', 'tex');
hTitle = title('Angular Spectral Distribution - S(\theta)', 'Interpreter', 'tex');
set([hXLabel, hYLabel], 'FontName', font)
set([hXLabel, hYLabel], 'FontSize', 14)
set(hTitle, 'FontName', font, 'FontSize', 16, 'FontWeight', 'bold'); % Set font and size for title
grid on
nexttile
plot(theta_vals/pi, g2_all, 'o-', 'LineWidth', 1.2, 'MarkerSize', 5);
set(gca, 'FontSize', 14);
ylim([-1.5 3.0]); % Set y-axis limits here
hXLabel = xlabel('$\delta\theta / \pi$', 'Interpreter', 'latex');
hYLabel = ylabel('$g^{(2)}(\delta\theta)$', 'Interpreter', 'latex');
hTitle = title('Autocorrelation', 'Interpreter', 'tex');
set([hXLabel, hYLabel], 'FontName', font)
set([hXLabel, hYLabel], 'FontSize', 14)
set(hTitle, 'FontName', font, 'FontSize', 16, 'FontWeight', 'bold'); % Set font and size for title
grid on;
%% Helper Functions
function [IMGFFT, IMGPR] = computeFourierTransform(I, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization)
% computeFourierSpectrum - Computes the 2D Fourier power spectrum
% of binarized and enhanced lattice image features, with optional central mask.
%
% Inputs:
% I - Grayscale or RGB image matrix
%
% Output:
% F_mag - 2D Fourier power spectrum (shifted)
if ~skipPreprocessing
% Preprocessing: Denoise
filtered = imgaussfilt(I, 10);
IMGPR = I - filtered; % adjust sigma as needed
else
IMGPR = I;
end
if ~skipMasking
[rows, cols] = size(IMGPR);
[X, Y] = meshgrid(1:cols, 1:rows);
% Elliptical mask parameters
cx = cols / 2;
cy = rows / 2;
% Shifted coordinates
x = X - cx;
y = Y - cy;
% Ellipse semi-axes
rx = 0.4 * cols;
ry = 0.2 * rows;
% Rotation angle in degrees -> radians
theta_deg = 30; % Adjust as needed
theta = deg2rad(theta_deg);
% Rotated ellipse equation
cos_t = cos(theta);
sin_t = sin(theta);
x_rot = (x * cos_t + y * sin_t);
y_rot = (-x * sin_t + y * cos_t);
ellipseMask = (x_rot.^2) / rx^2 + (y_rot.^2) / ry^2 <= 1;
% Apply cutout mask
IMGPR = IMGPR .* ellipseMask;
end
if ~skipIntensityThresholding
% Apply global intensity threshold mask
intensity_thresh = 0.20;
intensity_mask = IMGPR > intensity_thresh;
IMGPR = IMGPR .* intensity_mask;
end
if ~skipBinarization
% Adaptive binarization and cleanup
IMGPR = imbinarize(IMGPR, 'adaptive', 'Sensitivity', 0.0);
IMGPR = imdilate(IMGPR, strel('disk', 2));
IMGPR = imerode(IMGPR, strel('disk', 1));
IMGPR = imfill(IMGPR, 'holes');
F = fft2(double(IMGPR)); % Compute 2D Fourier Transform
IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center
else
F = fft2(double(IMGPR)); % Compute 2D Fourier Transform
IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center
end
end
function [theta_vals, S_theta] = computeNormalizedAngularSpectralDistribution(IMGFFT, r_min, r_max, num_bins, threshold, sigma)
% Apply threshold to isolate strong peaks
IMGFFT(IMGFFT < threshold) = 0;
% Prepare polar coordinates
[ny, nx] = size(IMGFFT);
[X, Y] = meshgrid(1:nx, 1:ny);
cx = ceil(nx/2);
cy = ceil(ny/2);
R = sqrt((X - cx).^2 + (Y - cy).^2);
Theta = atan2(Y - cy, X - cx); % range [-pi, pi]
% Choose radial band
radial_mask = (R >= r_min) & (R <= r_max);
% Initialize the angular structure factor array
S_theta = zeros(1, num_bins); % Pre-allocate for 180 angle bins
% Define the angle values for the x-axis
theta_vals = linspace(0, pi, num_bins);
% Loop through each angle bin
for i = 1:num_bins
angle_start = (i-1) * pi / num_bins;
angle_end = i * pi / num_bins;
% Define a mask for the given angle range
angle_mask = (Theta >= angle_start & Theta < angle_end);
bin_mask = radial_mask & angle_mask;
% Extract the Fourier components for the given angle
fft_angle = IMGFFT .* bin_mask;
% Integrate the Fourier components over the radius at the angle
S_theta(i) = sum(sum(abs(fft_angle).^2)); % sum of squared magnitudes
end
% Create a 1D Gaussian kernel
half_width = ceil(3 * sigma);
x = -half_width:half_width;
gauss_kernel = exp(-x.^2 / (2 * sigma^2));
gauss_kernel = gauss_kernel / sum(gauss_kernel); % normalize
% Apply convolution (circular padding to preserve periodicity)
S_theta = conv([S_theta(end-half_width+1:end), S_theta, S_theta(1:half_width)], gauss_kernel, 'same');
S_theta = S_theta(half_width+1:end-half_width); % crop back to original size
% Normalize to 1
S_theta = S_theta / max(S_theta);
end
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
% image must be a 2D numerical array
[dim1, dim2] = size(img);
s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction));
s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2);
s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction));
s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2);
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
end
function ret = subtractBackgroundOffset(img, fraction)
% Remove the background from the image.
% :param dataArray: The image
% :type dataArray: xarray DataArray
% :param x_fraction: The fraction of the pixels used in x axis
% :type x_fraction: float
% :param y_fraction: The fraction of the pixels used in y axis
% :type y_fraction: float
% :return: The image after removing background
% :rtype: xarray DataArray
x_fraction = fraction(1);
y_fraction = fraction(2);
offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction);
ret = img - offset;
end
function ret = cropODImage(img, center, span)
% Crop the image according to the region of interest (ROI).
% :param dataSet: The images
% :type dataSet: xarray DataArray or DataSet
% :param center: The center of region of interest (ROI)
% :type center: tuple
% :param span: The span of region of interest (ROI)
% :type span: tuple
% :return: The cropped images
% :rtype: xarray DataArray or DataSet
x_start = floor(center(1) - span(1) / 2);
x_end = floor(center(1) + span(1) / 2);
y_start = floor(center(2) - span(2) / 2);
y_end = floor(center(2) + span(2) / 2);
ret = img(y_start:y_end, x_start:x_end);
end
function ret = calculateODImage(imageAtom, imageBackground, imageDark)
% Calculate the OD image for absorption imaging.
% :param imageAtom: The image with atoms
% :type imageAtom: numpy array
% :param imageBackground: The image without atoms
% :type imageBackground: numpy array
% :param imageDark: The image without light
% :type imageDark: numpy array
% :return: The OD images
% :rtype: numpy array
numerator = imageBackground - imageDark;
denominator = imageAtom - imageDark;
numerator(numerator == 0) = 1;
denominator(denominator == 0) = 1;
ret = -log(double(abs(denominator ./ numerator)));
if numel(ret) == 1
ret = ret(1);
end
end
function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
% removefringesInImage - Fringe removal and noise reduction from absorption images.
% Creates an optimal reference image for each absorption image in a set as
% a linear combination of reference images, with coefficients chosen to
% minimize the least-squares residuals between each absorption image and
% the optimal reference image. The coefficients are obtained by solving a
% linear set of equations using matrix inverse by LU decomposition.
%
% Application of the algorithm is described in C. F. Ockeloen et al, Improved
% detection of small atom numbers through image processing, arXiv:1007.2136 (2010).
%
% Syntax:
% [optrefimages] = removefringesInImage(absimages,refimages,bgmask);
%
% Required inputs:
% absimages - Absorption image data,
% typically 16 bit grayscale images
% refimages - Raw reference image data
% absimages and refimages are both cell arrays containing
% 2D array data. The number of refimages can differ from the
% number of absimages.
%
% Optional inputs:
% bgmask - Array specifying background region used,
% 1=background, 0=data. Defaults to all ones.
% Outputs:
% optrefimages - Cell array of optimal reference images,
% equal in size to absimages.
%
% Dependencies: none
%
% Authors: Shannon Whitlock, Caspar Ockeloen
% Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and
% S. Whitlock, Improved detection of small atom numbers through
% image processing, arXiv:1007.2136
% Email:
% May 2009; Last revision: 11 August 2010
% Process inputs
% Set variables, and flatten absorption and reference images
nimgs = size(absimages,3);
nimgsR = size(refimages,3);
xdim = size(absimages(:,:,1),2);
ydim = size(absimages(:,:,1),1);
R = single(reshape(refimages,xdim*ydim,nimgsR));
A = single(reshape(absimages,xdim*ydim,nimgs));
optrefimages=zeros(size(absimages)); % preallocate
if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end
k = find(bgmask(:)==1); % Index k specifying background region
% Ensure there are no duplicate reference images
% R=unique(R','rows')'; % comment this line if you run out of memory
% Decompose B = R*R' using singular value or LU decomposition
[L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition
for j=1:nimgs
b=R(k,:)'*A(k,j);
% Obtain coefficients c which minimise least-square residuals
lower.LT = true; upper.UT = true;
c = linsolve(U,linsolve(L,b(p,:),lower),upper);
% Compute optimised reference image
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
end
end