271 lines
8.0 KiB
Matlab
271 lines
8.0 KiB
Matlab
%% Physical Constants
|
|
|
|
PlanckConstant = 6.62606957e-34;
|
|
PlanckConstantReduced = PlanckConstant / (2 * pi);
|
|
FineStructureConstant = 7.2973525698e-3;
|
|
ElectronMass = 9.10938291e-31;
|
|
GravitationalConstant = 6.67384e-11;
|
|
ProtonMass = 1.672621777e-27;
|
|
AtomicMassUnit = 1.66053878283e-27;
|
|
BohrRadius = 0.52917721092e-10;
|
|
BohrMagneton = 927.400968e-26;
|
|
BoltzmannConstant = 1.3806488e-23;
|
|
StandardGravityAcceleration = 9.80665;
|
|
SpeedOfLight = 299792458;
|
|
StefanBoltzmannConstant = 5.670373e-8;
|
|
ElectronCharge = 1.602176565e-19;
|
|
VacuumPermeability = 4 * pi * 1e-7;
|
|
DielectricConstant = 1 / (SpeedOfLight^2 * VacuumPermeability);
|
|
ElectronGyromagneticFactor = -2.00231930436153;
|
|
AvogadroConstant = 6.02214129e23;
|
|
|
|
%% Parameters
|
|
syms x y z theta lambda P wo wx1 wz1 wx2 wz2 I gamma real
|
|
|
|
% Define constants
|
|
lambda_val = 0.532; % µm
|
|
P_val = 1;
|
|
wo_val = 100;
|
|
|
|
% Set beam waists equal for simplicity
|
|
wx1 = wo; wz1 = wo;
|
|
wx2 = wo; wz2 = wo;
|
|
|
|
%% Rotation matrix and k-vectors
|
|
% Rotation matrix
|
|
R = @(theta) [1 0 0; 0 cos(theta) -sin(theta); 0 sin(theta) cos(theta)];
|
|
|
|
% Define rotated coordinates and k-vectors
|
|
k1 = @(theta) R(theta) * [0; 1; 0];
|
|
k2 = @(theta) R(-theta) * [0; 1; 0];
|
|
|
|
RotatedCoords1 = @(theta) R(theta) * [x; y; z];
|
|
RotatedCoords2 = @(theta) R(-theta) * [x; y; z];
|
|
|
|
%% Define E fields
|
|
|
|
% Generic orthogonal basis given a wavevector
|
|
getPolarizationBasis = @(kvec) deal( ...
|
|
simplify( cross(kvec, [1;0;0]) ), ...
|
|
simplify( cross(kvec, cross(kvec, [1;0;0])) ) ...
|
|
);
|
|
|
|
% Get k-vectors
|
|
k1vec = k1(theta);
|
|
k2vec = k2(theta);
|
|
|
|
% Get orthonormal basis for each polarization
|
|
[e1_a, e1_b] = getPolarizationBasis(k1vec);
|
|
[e2_a, e2_b] = getPolarizationBasis(k2vec);
|
|
|
|
% Normalize them (optional if you want unit vectors)
|
|
e1_a = simplify(e1_a / norm(e1_a));
|
|
e1_b = simplify(e1_b / norm(e1_b));
|
|
e2_a = simplify(e2_a / norm(e2_a));
|
|
e2_b = simplify(e2_b / norm(e2_b));
|
|
|
|
% Construct rotated polarization vectors using gamma
|
|
e_pol_1 = cos(gamma) * e1_a + sin(gamma) * e1_b;
|
|
e_pol_2 = cos(gamma) * e2_a + sin(gamma) * e2_b;
|
|
|
|
coords = [x; y; z];
|
|
rot1 = RotatedCoords1(theta);
|
|
rot2 = RotatedCoords2(theta);
|
|
|
|
E1 = sqrt((2 * P) / (pi * wx1 * wz1)) * ...
|
|
e_pol_1 .* exp(1i * (k1(theta).' * coords)) * ...
|
|
exp(-(rot1(1)^2 / wx1^2) - (rot1(3)^2 / wz1^2));
|
|
|
|
E2 = sqrt((2 * P) / (pi * wx2 * wz2)) * ...
|
|
e_pol_2 .* exp(1i * (k2(theta).' * coords)) * ...
|
|
exp(-(rot2(1)^2 / wx2^2) - (rot2(3)^2 / wz2^2));
|
|
|
|
Efield = simplify(E1 + E2);
|
|
IntensityVector = simplify(1/2 * real(conj(Efield) .* Efield)); % 3-component
|
|
IntensityScalar = simplify(1/2 * sum(abs(Efield).^2)); % Scalar total intensity (with polarization interference)
|
|
|
|
%% ================ Plot lattice in Y-Z plane =================== %%
|
|
|
|
% Define parameters
|
|
theta_val = deg2rad(10); % half-angle between beams
|
|
gamma_val = deg2rad(90); % tilt of linear polarization
|
|
|
|
% Extract z-component of intensity at x = 0
|
|
Iplane_z = simplify(subs(IntensityVector(3), x, 0));
|
|
|
|
% Convert to function
|
|
Iplane_z_func = matlabFunction(Iplane_z, 'Vars', {y, z, theta, wo, lambda, P, gamma});
|
|
|
|
% Grid for y and z
|
|
[ygrid, zgrid] = meshgrid(linspace(-1000, 1000, 500), linspace(-100, 100, 500));
|
|
|
|
% Evaluate intensity
|
|
Ivals = Iplane_z_func(ygrid, zgrid, theta_val, wo_val, lambda_val, P_val, gamma_val);
|
|
|
|
% Normalization
|
|
Ivals = Ivals / max(Ivals(:));
|
|
|
|
% Plotting
|
|
figure(1)
|
|
clf
|
|
set(gcf,'Position',[50 50 900 700])
|
|
contourf(ygrid, zgrid, Ivals, 200, 'LineColor', 'none');
|
|
colormap('turbo');
|
|
colorbar;
|
|
axis tight
|
|
xlabel('y [µm]', 'FontSize', 12);
|
|
ylabel('z [µm]', 'FontSize', 12);
|
|
title(['I_{plane}(y, z) at x = 0, \theta = ' num2str(rad2deg(theta_val)) '^\circ'], 'FontSize', 14);
|
|
set(gca, 'FontSize', 12, 'Box', 'on');
|
|
|
|
% ================ Plot 1-D intensity profiles of lattice =================== %%
|
|
|
|
% Find indices closest to zero in y and z grids:
|
|
[~, idx_y0] = min(abs(ygrid(1,:))); % y=0 along columns
|
|
[~, idx_z0] = min(abs(zgrid(:,1))); % z=0 along rows
|
|
|
|
% Cut along y at z=0:
|
|
% z=0 corresponds to row idx_z0, extract entire column idx_z0 in y direction
|
|
Iprop_cut = Ivals(idx_z0, :); % 1D array vs y
|
|
|
|
% Cut along z at y=0:
|
|
% y=0 corresponds to column idx_y0, extract entire row idx_y0 in z direction
|
|
Ivert_cut = Ivals(:, idx_y0); % 1D array vs z
|
|
|
|
% Extract corresponding y and z vectors
|
|
yvec = ygrid(1, :);
|
|
zvec = zgrid(:, 1);
|
|
|
|
% Plot -Iprop/2 along y
|
|
figure(2);
|
|
clf
|
|
set(gcf,'Position',[50 50 900 700])
|
|
plot(yvec, Iprop_cut, 'LineWidth', 2);
|
|
title('Profile at x=0, z=0');
|
|
xlabel('y [\mum]');
|
|
ylabel('Intensity');
|
|
grid on;
|
|
set(gca, 'FontSize', 12, 'Box', 'on');
|
|
|
|
% Plot -Ivert/2 along z
|
|
figure(3);
|
|
clf
|
|
set(gcf,'Position',[50 50 900 700])
|
|
plot(zvec, Ivert_cut, 'LineWidth', 2);
|
|
title('Profile at x=0, y=0');
|
|
xlabel('z [\mum]');
|
|
ylabel('Intensity');
|
|
grid on;
|
|
set(gca, 'FontSize', 12, 'Box', 'on');
|
|
|
|
%% Plot scalar intensity to see effect from change in polarization
|
|
|
|
theta_val = deg2rad(10); % half-angle between beams
|
|
|
|
Iplane_scalar = simplify(subs(IntensityScalar, x, 0));
|
|
Iplane_scalar_func = matlabFunction(Iplane_scalar, 'Vars', {y, z, theta, wo, lambda, P, gamma});
|
|
|
|
% Prepare figure
|
|
figure(4);
|
|
clf
|
|
set(gcf,'Position',[50 50 900 700])
|
|
hold on
|
|
|
|
% Define gamma values to compare
|
|
gammas = linspace(0, pi/2, 10); % from 0 (p) to pi/2 (s)
|
|
|
|
% Find y = 0 index
|
|
[~, idx_y0] = min(abs(ygrid(1,:))); % column index
|
|
|
|
% Colors for curves
|
|
colors = turbo(length(gammas));
|
|
|
|
% Preallocate contrast array
|
|
contrasts = zeros(size(gammas));
|
|
|
|
for i = 1:length(gammas)
|
|
gamma_val = gammas(i);
|
|
|
|
% Evaluate intensity
|
|
Ivals = Iplane_scalar_func(ygrid, zgrid, theta_val, wo_val, lambda_val, P_val, gamma_val);
|
|
Ivals = Ivals / max(Ivals(:)); % normalize
|
|
|
|
% Extract z-cut at y = 0
|
|
Icut = Ivals(:, idx_y0);
|
|
|
|
% Compute contrast
|
|
Imax = max(Icut);
|
|
Imin = min(Icut);
|
|
contrasts(i) = (Imax - Imin) / (Imax + Imin);
|
|
|
|
% Plot
|
|
plot(zvec, Icut, 'LineWidth', 2, 'DisplayName', ...
|
|
['\gamma = ' num2str(rad2deg(gamma_val), '%0.1f') '^\circ'], ...
|
|
'Color', colors(i, :));
|
|
end
|
|
|
|
% Finalize figure
|
|
xlabel('z [\mum]', 'FontSize', 12);
|
|
ylabel('Normalized Intensity', 'FontSize', 12);
|
|
title('Intensity cut along z at y=0 for varying \gamma', 'FontSize', 14);
|
|
legend('Location', 'best');
|
|
grid on
|
|
box on
|
|
set(gca, 'FontSize', 12);
|
|
|
|
% --- New Figure for Contrast vs Gamma ---
|
|
figure(5);
|
|
clf
|
|
set(gcf,'Position',[50 50 900 700])
|
|
plot(rad2deg(gammas), contrasts, '-o', 'LineWidth', 2);
|
|
xlabel('\gamma [degrees]', 'FontSize', 14);
|
|
ylabel('Fringe Contrast', 'FontSize', 14);
|
|
title(['Contrast vs. Polarization Angle \gamma, \theta = ' num2str(rad2deg(theta_val)) '^\circ'], 'FontSize', 16);
|
|
grid on
|
|
box on
|
|
set(gca, 'FontSize', 14);
|
|
%%
|
|
% --- Contrast vs Theta for fixed gamma = 0 and gamma = pi/2 ---
|
|
|
|
% Define range of theta values (in radians)
|
|
theta_vals = linspace(deg2rad(1), deg2rad(45), 50); % e.g., from 1° to 45°
|
|
|
|
% Fixed gammas for contrast comparison
|
|
gamma_fixed = [0, pi/2];
|
|
contrast_vs_theta = zeros(length(gamma_fixed), length(theta_vals));
|
|
|
|
for g_idx = 1:length(gamma_fixed)
|
|
gamma_val = gamma_fixed(g_idx);
|
|
|
|
for t_idx = 1:length(theta_vals)
|
|
theta_val_local = theta_vals(t_idx);
|
|
|
|
% Evaluate intensity on grid
|
|
Ivals = Iplane_scalar_func(ygrid, zgrid, theta_val_local, wo_val, lambda_val, P_val, gamma_val);
|
|
Ivals = Ivals / max(Ivals(:)); % normalize
|
|
|
|
% Extract z-cut at y=0
|
|
Icut = Ivals(:, idx_y0);
|
|
|
|
% Compute contrast
|
|
Imax = max(Icut);
|
|
Imin = min(Icut);
|
|
contrast_vs_theta(g_idx, t_idx) = (Imax - Imin) / (Imax + Imin);
|
|
end
|
|
end
|
|
|
|
% Plot contrast vs theta for the two fixed gammas
|
|
figure(6);
|
|
clf
|
|
set(gcf,'Position',[50 50 900 700])
|
|
plot(rad2deg(theta_vals), contrast_vs_theta(1,:), '-o', 'LineWidth', 2, 'DisplayName', '\gamma = 0^\circ (p-pol)');
|
|
hold on
|
|
plot(rad2deg(theta_vals), contrast_vs_theta(2,:), '-s', 'LineWidth', 2, 'DisplayName', '\gamma = 90^\circ (s-pol)');
|
|
xlabel('\theta [degrees]', 'FontSize', 14);
|
|
ylabel('Fringe Contrast', 'FontSize', 14);
|
|
title('Contrast vs. Half-angle \theta for fixed polarizations \gamma', 'FontSize', 16);
|
|
legend('Location', 'southwest');
|
|
grid on
|
|
box on
|
|
set(gca, 'FontSize', 14);
|