Calculations/Estimations/OpticalAccordionLattice.m

271 lines
8.0 KiB
Matlab

%% Physical Constants
PlanckConstant = 6.62606957e-34;
PlanckConstantReduced = PlanckConstant / (2 * pi);
FineStructureConstant = 7.2973525698e-3;
ElectronMass = 9.10938291e-31;
GravitationalConstant = 6.67384e-11;
ProtonMass = 1.672621777e-27;
AtomicMassUnit = 1.66053878283e-27;
BohrRadius = 0.52917721092e-10;
BohrMagneton = 927.400968e-26;
BoltzmannConstant = 1.3806488e-23;
StandardGravityAcceleration = 9.80665;
SpeedOfLight = 299792458;
StefanBoltzmannConstant = 5.670373e-8;
ElectronCharge = 1.602176565e-19;
VacuumPermeability = 4 * pi * 1e-7;
DielectricConstant = 1 / (SpeedOfLight^2 * VacuumPermeability);
ElectronGyromagneticFactor = -2.00231930436153;
AvogadroConstant = 6.02214129e23;
%% Parameters
syms x y z theta lambda P wo wx1 wz1 wx2 wz2 I gamma real
% Define constants
lambda_val = 0.532; % µm
P_val = 1;
wo_val = 100;
% Set beam waists equal for simplicity
wx1 = wo; wz1 = wo;
wx2 = wo; wz2 = wo;
%% Rotation matrix and k-vectors
% Rotation matrix
R = @(theta) [1 0 0; 0 cos(theta) -sin(theta); 0 sin(theta) cos(theta)];
% Define rotated coordinates and k-vectors
k1 = @(theta) R(theta) * [0; 1; 0];
k2 = @(theta) R(-theta) * [0; 1; 0];
RotatedCoords1 = @(theta) R(theta) * [x; y; z];
RotatedCoords2 = @(theta) R(-theta) * [x; y; z];
%% Define E fields
% Generic orthogonal basis given a wavevector
getPolarizationBasis = @(kvec) deal( ...
simplify( cross(kvec, [1;0;0]) ), ...
simplify( cross(kvec, cross(kvec, [1;0;0])) ) ...
);
% Get k-vectors
k1vec = k1(theta);
k2vec = k2(theta);
% Get orthonormal basis for each polarization
[e1_a, e1_b] = getPolarizationBasis(k1vec);
[e2_a, e2_b] = getPolarizationBasis(k2vec);
% Normalize them (optional if you want unit vectors)
e1_a = simplify(e1_a / norm(e1_a));
e1_b = simplify(e1_b / norm(e1_b));
e2_a = simplify(e2_a / norm(e2_a));
e2_b = simplify(e2_b / norm(e2_b));
% Construct rotated polarization vectors using gamma
e_pol_1 = cos(gamma) * e1_a + sin(gamma) * e1_b;
e_pol_2 = cos(gamma) * e2_a + sin(gamma) * e2_b;
coords = [x; y; z];
rot1 = RotatedCoords1(theta);
rot2 = RotatedCoords2(theta);
E1 = sqrt((2 * P) / (pi * wx1 * wz1)) * ...
e_pol_1 .* exp(1i * (k1(theta).' * coords)) * ...
exp(-(rot1(1)^2 / wx1^2) - (rot1(3)^2 / wz1^2));
E2 = sqrt((2 * P) / (pi * wx2 * wz2)) * ...
e_pol_2 .* exp(1i * (k2(theta).' * coords)) * ...
exp(-(rot2(1)^2 / wx2^2) - (rot2(3)^2 / wz2^2));
Efield = simplify(E1 + E2);
IntensityVector = simplify(1/2 * real(conj(Efield) .* Efield)); % 3-component
IntensityScalar = simplify(1/2 * sum(abs(Efield).^2)); % Scalar total intensity (with polarization interference)
%% ================ Plot lattice in Y-Z plane =================== %%
% Define parameters
theta_val = deg2rad(10); % half-angle between beams
gamma_val = deg2rad(90); % tilt of linear polarization
% Extract z-component of intensity at x = 0
Iplane_z = simplify(subs(IntensityVector(3), x, 0));
% Convert to function
Iplane_z_func = matlabFunction(Iplane_z, 'Vars', {y, z, theta, wo, lambda, P, gamma});
% Grid for y and z
[ygrid, zgrid] = meshgrid(linspace(-1000, 1000, 500), linspace(-100, 100, 500));
% Evaluate intensity
Ivals = Iplane_z_func(ygrid, zgrid, theta_val, wo_val, lambda_val, P_val, gamma_val);
% Normalization
Ivals = Ivals / max(Ivals(:));
% Plotting
figure(1)
clf
set(gcf,'Position',[50 50 900 700])
contourf(ygrid, zgrid, Ivals, 200, 'LineColor', 'none');
colormap('turbo');
colorbar;
axis tight
xlabel('y [µm]', 'FontSize', 12);
ylabel('z [µm]', 'FontSize', 12);
title(['I_{plane}(y, z) at x = 0, \theta = ' num2str(rad2deg(theta_val)) '^\circ'], 'FontSize', 14);
set(gca, 'FontSize', 12, 'Box', 'on');
% ================ Plot 1-D intensity profiles of lattice =================== %%
% Find indices closest to zero in y and z grids:
[~, idx_y0] = min(abs(ygrid(1,:))); % y=0 along columns
[~, idx_z0] = min(abs(zgrid(:,1))); % z=0 along rows
% Cut along y at z=0:
% z=0 corresponds to row idx_z0, extract entire column idx_z0 in y direction
Iprop_cut = Ivals(idx_z0, :); % 1D array vs y
% Cut along z at y=0:
% y=0 corresponds to column idx_y0, extract entire row idx_y0 in z direction
Ivert_cut = Ivals(:, idx_y0); % 1D array vs z
% Extract corresponding y and z vectors
yvec = ygrid(1, :);
zvec = zgrid(:, 1);
% Plot -Iprop/2 along y
figure(2);
clf
set(gcf,'Position',[50 50 900 700])
plot(yvec, Iprop_cut, 'LineWidth', 2);
title('Profile at x=0, z=0');
xlabel('y [\mum]');
ylabel('Intensity');
grid on;
set(gca, 'FontSize', 12, 'Box', 'on');
% Plot -Ivert/2 along z
figure(3);
clf
set(gcf,'Position',[50 50 900 700])
plot(zvec, Ivert_cut, 'LineWidth', 2);
title('Profile at x=0, y=0');
xlabel('z [\mum]');
ylabel('Intensity');
grid on;
set(gca, 'FontSize', 12, 'Box', 'on');
%% Plot scalar intensity to see effect from change in polarization
theta_val = deg2rad(10); % half-angle between beams
Iplane_scalar = simplify(subs(IntensityScalar, x, 0));
Iplane_scalar_func = matlabFunction(Iplane_scalar, 'Vars', {y, z, theta, wo, lambda, P, gamma});
% Prepare figure
figure(4);
clf
set(gcf,'Position',[50 50 900 700])
hold on
% Define gamma values to compare
gammas = linspace(0, pi/2, 10); % from 0 (p) to pi/2 (s)
% Find y = 0 index
[~, idx_y0] = min(abs(ygrid(1,:))); % column index
% Colors for curves
colors = turbo(length(gammas));
% Preallocate contrast array
contrasts = zeros(size(gammas));
for i = 1:length(gammas)
gamma_val = gammas(i);
% Evaluate intensity
Ivals = Iplane_scalar_func(ygrid, zgrid, theta_val, wo_val, lambda_val, P_val, gamma_val);
Ivals = Ivals / max(Ivals(:)); % normalize
% Extract z-cut at y = 0
Icut = Ivals(:, idx_y0);
% Compute contrast
Imax = max(Icut);
Imin = min(Icut);
contrasts(i) = (Imax - Imin) / (Imax + Imin);
% Plot
plot(zvec, Icut, 'LineWidth', 2, 'DisplayName', ...
['\gamma = ' num2str(rad2deg(gamma_val), '%0.1f') '^\circ'], ...
'Color', colors(i, :));
end
% Finalize figure
xlabel('z [\mum]', 'FontSize', 12);
ylabel('Normalized Intensity', 'FontSize', 12);
title('Intensity cut along z at y=0 for varying \gamma', 'FontSize', 14);
legend('Location', 'best');
grid on
box on
set(gca, 'FontSize', 12);
% --- New Figure for Contrast vs Gamma ---
figure(5);
clf
set(gcf,'Position',[50 50 900 700])
plot(rad2deg(gammas), contrasts, '-o', 'LineWidth', 2);
xlabel('\gamma [degrees]', 'FontSize', 14);
ylabel('Fringe Contrast', 'FontSize', 14);
title(['Contrast vs. Polarization Angle \gamma, \theta = ' num2str(rad2deg(theta_val)) '^\circ'], 'FontSize', 16);
grid on
box on
set(gca, 'FontSize', 14);
%%
% --- Contrast vs Theta for fixed gamma = 0 and gamma = pi/2 ---
% Define range of theta values (in radians)
theta_vals = linspace(deg2rad(1), deg2rad(45), 50); % e.g., from 1° to 45°
% Fixed gammas for contrast comparison
gamma_fixed = [0, pi/2];
contrast_vs_theta = zeros(length(gamma_fixed), length(theta_vals));
for g_idx = 1:length(gamma_fixed)
gamma_val = gamma_fixed(g_idx);
for t_idx = 1:length(theta_vals)
theta_val_local = theta_vals(t_idx);
% Evaluate intensity on grid
Ivals = Iplane_scalar_func(ygrid, zgrid, theta_val_local, wo_val, lambda_val, P_val, gamma_val);
Ivals = Ivals / max(Ivals(:)); % normalize
% Extract z-cut at y=0
Icut = Ivals(:, idx_y0);
% Compute contrast
Imax = max(Icut);
Imin = min(Icut);
contrast_vs_theta(g_idx, t_idx) = (Imax - Imin) / (Imax + Imin);
end
end
% Plot contrast vs theta for the two fixed gammas
figure(6);
clf
set(gcf,'Position',[50 50 900 700])
plot(rad2deg(theta_vals), contrast_vs_theta(1,:), '-o', 'LineWidth', 2, 'DisplayName', '\gamma = 0^\circ (p-pol)');
hold on
plot(rad2deg(theta_vals), contrast_vs_theta(2,:), '-s', 'LineWidth', 2, 'DisplayName', '\gamma = 90^\circ (s-pol)');
xlabel('\theta [degrees]', 'FontSize', 14);
ylabel('Fringe Contrast', 'FontSize', 14);
title('Contrast vs. Half-angle \theta for fixed polarizations \gamma', 'FontSize', 16);
legend('Location', 'southwest');
grid on
box on
set(gca, 'FontSize', 14);