Calculations/Quasi2DBogoliubovSpectrum.m

130 lines
8.3 KiB
Matlab

%% Physical constants
PlanckConstant = 6.62607015E-34;
PlanckConstantReduced = 6.62607015E-34/(2*pi);
FineStructureConstant = 7.2973525698E-3;
ElectronMass = 9.10938291E-31;
GravitationalConstant = 6.67384E-11;
ProtonMass = 1.672621777E-27;
AtomicMassUnit = 1.660539066E-27;
BohrRadius = 5.2917721067E-11;
BohrMagneton = 9.274009994E-24;
BoltzmannConstant = 1.38064852E-23;
StandardGravityAcceleration = 9.80665;
SpeedOfLight = 299792458;
StefanBoltzmannConstant = 5.670373E-8;
ElectronCharge = 1.602176634E-19;
VacuumPermeability = 1.25663706212E-6;
DielectricConstant = 8.8541878128E-12;
ElectronGyromagneticFactor = -2.00231930436153;
AvogadroConstant = 6.02214076E23;
ZeroKelvin = 273.15;
GravitationalAcceleration = 9.80553;
VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability);
HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius);
AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3
% Dy specific constants
Dy164Mass = 163.929174751*1.660539066E-27;
Dy164IsotopicAbundance = 0.2826;
DyMagneticMoment = 9.93*9.274009994E-24;
%% Bogoliubov excitation spectrum for quasi-2D dipolar gas with QF correction
AtomNumber = 1E5; % Total atom number in the system
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
as = 102.515 * BohrRadius; % Scattering length
Trapsize = 7.5815 * lz; % Trap is assumed to be a box of finite extent , given here in units of the harmonic oscillator length
alpha = 0; % Polar angle of dipole moment
phi = 0; % Azimuthal angle of momentum vector
MeanWidth = 5.7304888515 * lz; % Mean width of Gaussian ansatz
k = linspace(0, 3e6, 1000); % Vector of magnitudes of k vector
AtomNumberDensity = AtomNumber / Trapsize^2; % Areal density of atoms
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
eps_dd = add/as; % Relative interaction strength
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
gdd = VacuumPermeability*DyMagneticMoment^2/3;
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi); % DDI potential in k-space
% == Quantum Fluctuations term == %
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2));
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
gQF = gamma5 * gammaQF;
% == Dispersion relation == %
DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2));
EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK);
figure(1)
set(gcf,'Position',[50 50 950 750])
xvals = (k .* add);
yvals = EpsilonK ./ PlanckConstant;
plot(xvals, yvals,LineWidth=2.0)
title(horzcat(['$a_s = ',num2str(round(1/eps_dd,3)),'a_{dd}, '], ['na_{dd}^2 = ',num2str(round(AtomNumberDensity * add^2,4)),'$']),'fontsize',16,'interpreter','latex')
xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex')
ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex')
grid on
%% Bogoliubov excitation spectrum for quasi-2D dipolar gas with QF correction
AtomNumber = 1E5; % Total atom number in the system
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
Trapsize = 7.5815 * lz; % Trap is assumed to be a box of finite extent , given here in units of the harmonic oscillator length
alpha = 0; % Polar angle of dipole moment
phi = 0; % Azimuthal angle of momentum vector
MeanWidth = 5.7304888515 * lz; % Mean width of Gaussian ansatz
k = linspace(0, 3e6, 1000); % Vector of magnitudes of k vector
AtomNumberDensity = AtomNumber / Trapsize^2; % Areal density of atoms
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
ScatteringLengths = [];
eps_dds = [];
EpsilonKs = [];
for a = linspace(131,102.515,5)
as = a * BohrRadius; % Scattering length
eps_dd = add/as; % Relative interaction strength
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
gdd = VacuumPermeability*DyMagneticMoment^2/3;
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi); % DDI potential in k-space
% == Quantum Fluctuations term == %
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2));
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
gQF = gamma5 * gammaQF;
% == Dispersion relation == %
DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2));
EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK);
ScatteringLengths(end+1) = as;
eps_dds(end+1) = eps_dd;
EpsilonKs(end+1,:) = EpsilonK;
end
figure(2)
set(gcf,'Position',[50 50 950 750])
xvals = (k .* add);
yvals = EpsilonKs(1, :) ./ PlanckConstant;
plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(1/eps_dds(1),3)),'a_{dd}$'])
hold on
for idx = 2:length(ScatteringLengths)
yvals = EpsilonKs(idx, :) ./ PlanckConstant;
plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(1/eps_dds(idx),3)),'a_{dd}$'])
end
title(['$na_{dd}^2 = ',num2str(round(AtomNumberDensity * add^2,4)),'$'],'fontsize',16,'interpreter','latex')
xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex')
ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex')
grid on
legend('location', 'northwest','fontsize',16, 'Interpreter','latex')
%%
function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi)
Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2)));
gamma4 = 1/(sqrt(2*pi) * MeanWidth);
Fka = (3 * cos(deg2rad(alpha))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(alpha))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(alpha))^2));
Ukk = (gs + (gdd * Fka)) * gamma4;
end