365 lines
15 KiB
Matlab
365 lines
15 KiB
Matlab
%% Across range of a_s, n
|
|
|
|
% load('.\Results\ExtractingParameters_Result_Below1000.mat')
|
|
% load('.\Results\ExtractingParameters_Result_Above1000.mat')
|
|
load('.\Results\ExtractingParameters_Result_Above10000.mat')
|
|
|
|
PlanckConstantReduced = 6.62607015E-34/(2*pi);
|
|
AtomicMassUnit = 1.660539066E-27;
|
|
Dy164Mass = 163.929174751*AtomicMassUnit;
|
|
VacuumPermeability = 1.25663706212E-6;
|
|
BohrMagneton = 9.274009994E-24;
|
|
BohrRadius = 5.2917721067E-11;
|
|
DyMagneticMoment = 9.93*BohrMagneton;
|
|
|
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
|
|
|
% Create a tiled layout with tighter spacing
|
|
figure(17)
|
|
clf
|
|
set(gcf,'Position',[50 50 1800 500])
|
|
t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid
|
|
|
|
% First subplot
|
|
nexttile; % Equivalent to subplot(2, 2, 1)
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
eps_dd_values = data_struct(idx).eps_dd_values;
|
|
plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex');
|
|
ylabel('$\epsilon_{dd}$', 'fontsize', 16, 'interpreter', 'latex');
|
|
grid on
|
|
legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size
|
|
|
|
% Second subplot
|
|
nexttile; % Equivalent to subplot(2, 2, 2)
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
n_values = data_struct(idx).n_values;
|
|
plot(theta_values, n_values * 1E-15, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex');
|
|
ylabel('$n (\times 10^{3} \mu m^{-2})$', 'fontsize', 16, 'interpreter', 'latex');
|
|
grid on
|
|
legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size
|
|
|
|
% Third subplot
|
|
nexttile; % Equivalent to subplot(2, 2, 3)
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
k_roton_values = data_struct(idx).k_roton_values;
|
|
plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$','fontsize',16,'interpreter','latex');
|
|
ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex');
|
|
grid on
|
|
legend('location', 'northeast','fontsize', 10, 'Interpreter','latex')
|
|
|
|
% Adjust layout to minimize space
|
|
t.TileSpacing = 'compact'; % Minimize space between tiles
|
|
t.Padding = 'compact'; % Minimize padding around the layout
|
|
|
|
% Convert to units relevant to experiment
|
|
|
|
% Create a tiled layout with tighter spacing
|
|
figure(18)
|
|
clf
|
|
set(gcf,'Position',[50 50 1800 500])
|
|
t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid
|
|
|
|
% First subplot
|
|
nexttile; % Equivalent to subplot(2, 2, 1)
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
eps_dd_values = data_struct(idx).eps_dd_values;
|
|
plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex');
|
|
ylabel('$a_s (\times a_o)$', 'fontsize', 16, 'interpreter', 'latex');
|
|
grid on
|
|
legend('location', 'southeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size
|
|
|
|
% Second subplot
|
|
nexttile; % Equivalent to subplot(2, 2, 2)
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
n_values = data_struct(idx).n_values;
|
|
Lx = 10e-6;
|
|
Ly = 10e-6;
|
|
AtomNumber = n_values .* Lx * Ly;
|
|
plot(theta_values, AtomNumber * 1e-5, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex');
|
|
ylabel('Atom number in a trap of area 100 $\mu m^2 (\times 10^{5})$', 'fontsize', 16, 'interpreter', 'latex');
|
|
grid on
|
|
legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size
|
|
|
|
% Third subplot
|
|
nexttile; % Equivalent to subplot(2, 2, 3)
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
lambda_roton_values = (2 * pi) ./ data_struct(idx).k_roton_values;
|
|
plot(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$','fontsize',16,'interpreter','latex');
|
|
ylabel('$\lambda_{roton} (\mu m)$','fontsize',16,'interpreter','latex');
|
|
grid on
|
|
legend('location', 'northeast','fontsize', 10, 'Interpreter','latex')
|
|
|
|
% Adjust layout to minimize space
|
|
t.TileSpacing = 'compact'; % Minimize space between tiles
|
|
t.Padding = 'compact'; % Minimize padding around the layout
|
|
|
|
%% Fixed Density results
|
|
|
|
load('.\Results\ExtractingParameters_Result_FixedDensity_phi0.mat')
|
|
|
|
PlanckConstantReduced = 6.62607015E-34/(2*pi);
|
|
AtomicMassUnit = 1.660539066E-27;
|
|
Dy164Mass = 163.929174751*AtomicMassUnit;
|
|
VacuumPermeability = 1.25663706212E-6;
|
|
BohrMagneton = 9.274009994E-24;
|
|
BohrRadius = 5.2917721067E-11;
|
|
DyMagneticMoment = 9.93*BohrMagneton;
|
|
|
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
|
|
|
% Create a tiled layout with tighter spacing
|
|
figure(19)
|
|
clf
|
|
set(gcf,'Position',[50 50 1200 500])
|
|
t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid
|
|
|
|
% First subplot
|
|
nexttile;
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
eps_dd_values = data_struct(idx).eps_dd_values;
|
|
plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex');
|
|
ylabel('$\epsilon_{dd}$', 'fontsize', 16, 'interpreter', 'latex');
|
|
grid on
|
|
legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size
|
|
|
|
% Second subplot
|
|
nexttile;
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
k_roton_values = data_struct(idx).k_roton_values;
|
|
plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$','fontsize',16,'interpreter','latex');
|
|
ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex');
|
|
grid on
|
|
legend('location', 'northeast','fontsize', 10, 'Interpreter','latex')
|
|
|
|
% Adjust layout to minimize space
|
|
t.TileSpacing = 'compact'; % Minimize space between tiles
|
|
t.Padding = 'compact'; % Minimize padding around the layout
|
|
|
|
% Create a tiled layout with tighter spacing
|
|
figure(20)
|
|
clf
|
|
set(gcf,'Position',[50 50 1200 500])
|
|
t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid
|
|
|
|
% First subplot
|
|
nexttile;
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
eps_dd_values = data_struct(idx).eps_dd_values;
|
|
plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex');
|
|
ylabel('$a_s (\times a_o)$', 'fontsize', 16, 'interpreter', 'latex');
|
|
grid on
|
|
legend('location', 'northwest', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size
|
|
|
|
% Second subplot
|
|
nexttile;
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
lambda_roton_values = (2 * pi) ./ data_struct(idx).k_roton_values;
|
|
semilogy(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
% ylim([0 2])
|
|
xlabel('$\theta$','fontsize',16,'interpreter','latex');
|
|
ylabel('$\lambda_{roton} (\mu m)$','fontsize',16,'interpreter','latex');
|
|
grid on
|
|
legend('location', 'southeast','fontsize', 10, 'Interpreter','latex')
|
|
|
|
% Adjust layout to minimize space
|
|
t.TileSpacing = 'compact'; % Minimize space between tiles
|
|
t.Padding = 'compact'; % Minimize padding around the layout
|
|
|
|
%% Fixed Density results - compare two orthogonal directions
|
|
|
|
data0 = load('.\Results\ExtractingParameters_Result_FixedDensity_phi0.mat');
|
|
data90 = load('.\Results\ExtractingParameters_Result_FixedDensity_phi90.mat');
|
|
|
|
PlanckConstantReduced = 6.62607015E-34/(2*pi);
|
|
AtomicMassUnit = 1.660539066E-27;
|
|
Dy164Mass = 163.929174751*AtomicMassUnit;
|
|
VacuumPermeability = 1.25663706212E-6;
|
|
BohrMagneton = 9.274009994E-24;
|
|
BohrRadius = 5.2917721067E-11;
|
|
DyMagneticMoment = 9.93*BohrMagneton;
|
|
|
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
|
|
|
% Create a tiled layout with tighter spacing
|
|
figure(21)
|
|
clf
|
|
set(gcf,'Position',[50 50 1200 500])
|
|
t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid
|
|
|
|
idx = 4;
|
|
|
|
% First subplot
|
|
nexttile;
|
|
theta_values = data0.data_struct(idx).theta_values;
|
|
eps_dd_values = data0.data_struct(idx).eps_dd_values;
|
|
plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']);
|
|
hold on
|
|
theta_values = data90.data_struct(idx).theta_values;
|
|
eps_dd_values = data90.data_struct(idx).eps_dd_values;
|
|
plot(theta_values, eps_dd_values, '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']);
|
|
xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex');
|
|
ylabel('$\epsilon_{dd}$', 'fontsize', 16, 'interpreter', 'latex');
|
|
grid on
|
|
legend('location', 'northeast', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size
|
|
|
|
% Second subplot
|
|
nexttile;
|
|
theta_values = data0.data_struct(idx).theta_values;
|
|
k_roton_values = data0.data_struct(idx).k_roton_values;
|
|
plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']);
|
|
hold on
|
|
theta_values = data90.data_struct(idx).theta_values;
|
|
k_roton_values = data90.data_struct(idx).k_roton_values;
|
|
plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']);
|
|
xlabel('$\theta$','fontsize',16,'interpreter','latex');
|
|
ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex');
|
|
grid on
|
|
legend('location', 'northeast','fontsize', 10, 'Interpreter','latex')
|
|
|
|
% Adjust layout to minimize space
|
|
t.TileSpacing = 'compact'; % Minimize space between tiles
|
|
t.Padding = 'compact'; % Minimize padding around the layout
|
|
|
|
|
|
% Create a tiled layout with tighter spacing
|
|
figure(22)
|
|
clf
|
|
set(gcf,'Position',[50 50 1200 500])
|
|
t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact'); % 2x2 grid
|
|
|
|
% First subplot
|
|
nexttile;
|
|
theta_values = data0.data_struct(idx).theta_values;
|
|
eps_dd_values = data0.data_struct(idx).eps_dd_values;
|
|
plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']);
|
|
hold on
|
|
theta_values = data90.data_struct(idx).theta_values;
|
|
eps_dd_values = data90.data_struct(idx).eps_dd_values;
|
|
plot(theta_values, (1 ./ eps_dd_values) * (add / BohrRadius), '-o', 'LineWidth', 2.0, 'DisplayName', ['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']);
|
|
xlabel('$\theta$', 'fontsize', 16, 'interpreter', 'latex');
|
|
ylabel('$a_s (\times a_o)$', 'fontsize', 16, 'interpreter', 'latex');
|
|
grid on
|
|
legend('location', 'northwest', 'fontsize', 10, 'Interpreter', 'latex'); % Reduced font size
|
|
|
|
% Second subplot
|
|
nexttile;
|
|
theta_values = data0.data_struct(idx).theta_values;
|
|
k_roton_values = data0.data_struct(idx).k_roton_values;
|
|
lambda_roton_values = (2 * pi) ./ k_roton_values;
|
|
semilogy(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data0.data_struct(idx).wz_value), ' Hz; $\phi = 0^\circ$']);
|
|
hold on
|
|
theta_values = data90.data_struct(idx).theta_values;
|
|
k_roton_values = data90.data_struct(idx).k_roton_values;
|
|
lambda_roton_values = (2 * pi) ./ k_roton_values;
|
|
semilogy(theta_values, lambda_roton_values * 1E6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data90.data_struct(idx).wz_value), ' Hz; $\phi = 90^\circ$']);
|
|
xlabel('$\theta$','fontsize',16,'interpreter','latex');
|
|
ylabel('$\lambda_{roton} (\mu m)$','fontsize',16,'interpreter','latex');
|
|
grid on
|
|
legend('location', 'northwest','fontsize', 10, 'Interpreter','latex')
|
|
|
|
% Adjust layout to minimize space
|
|
t.TileSpacing = 'compact'; % Minimize space between tiles
|
|
t.Padding = 'compact'; % Minimize padding around the layout
|
|
|
|
%%
|
|
%{
|
|
figure(13)
|
|
clf
|
|
set(gcf,'Position',[50 50 950 750])
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
eps_dd_values = data_struct(idx).eps_dd_values;
|
|
plot(theta_values, eps_dd_values, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$','fontsize',16,'interpreter','latex');
|
|
ylabel('$\epsilon_{dd}$','fontsize',16,'interpreter','latex');
|
|
% title([''],'fontsize',16,'interpreter','latex')
|
|
grid on
|
|
legend('location', 'northeast','fontsize', 16, 'Interpreter','latex')
|
|
|
|
figure(14)
|
|
clf
|
|
set(gcf,'Position',[50 50 950 750])
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
eps_dd_values = data_struct(idx).eps_dd_values;
|
|
plot(theta_values, (1./eps_dd_values) * (add/BohrRadius), '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$','fontsize',16,'interpreter','latex');
|
|
ylabel('$a_s (\times a_o)$','fontsize',16,'interpreter','latex');
|
|
% title([''],'fontsize',16,'interpreter','latex')
|
|
grid on
|
|
legend('location', 'southeast','fontsize', 16, 'Interpreter','latex')
|
|
|
|
figure(15)
|
|
clf
|
|
set(gcf,'Position',[50 50 950 750])
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
n_values = data_struct(idx).n_values;
|
|
plot(theta_values, n_values * 1E-15, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$','fontsize',16,'interpreter','latex');
|
|
ylabel('$n (\times 10^{3} \mu m^{-2})$','fontsize',16,'interpreter','latex');
|
|
% title([''],'fontsize',16,'interpreter','latex')
|
|
grid on
|
|
legend('location', 'northeast','fontsize', 16, 'Interpreter','latex')
|
|
|
|
figure(16)
|
|
clf
|
|
set(gcf,'Position',[50 50 950 750])
|
|
for idx = 1:length(data_struct)
|
|
theta_values = data_struct(idx).theta_values;
|
|
k_roton_values = data_struct(idx).k_roton_values;
|
|
plot(theta_values, k_roton_values * 1E-6, '-o', LineWidth=2.0, DisplayName=['$w_z = 2 \pi \times $', num2str(data_struct(idx).wz_value), ' Hz']);
|
|
hold on
|
|
end
|
|
xlabel('$\theta$','fontsize',16,'interpreter','latex');
|
|
ylabel('$k_{roton} (\mu m^{-1})$','fontsize',16,'interpreter','latex');
|
|
% title([''],'fontsize',16,'interpreter','latex')
|
|
grid on
|
|
legend('location', 'northeast','fontsize', 16, 'Interpreter','latex')
|
|
%}
|