200 lines
4.6 KiB
Matlab
200 lines
4.6 KiB
Matlab
%% STRIPES
|
|
% 2-D
|
|
% Parameters
|
|
c = 1; % Fourier coeffecient
|
|
k = 2; % wavenumber
|
|
n = 2; % order
|
|
|
|
% Range for x and y
|
|
x = linspace(-2, 2, 500);
|
|
y = linspace(-2, 2, 500);
|
|
|
|
% Create a meshgrid for 2D
|
|
[~, Y] = meshgrid(x, y);
|
|
|
|
% Define the 2D function
|
|
f_xy = (1 + (c * cos(n * k * Y))) / (1 + (0.5 * c^2));
|
|
|
|
% Plot the 2D image using imagesc
|
|
figure(1);
|
|
imagesc(x, y, f_xy);
|
|
axis xy; % Make sure the y-axis is oriented correctly
|
|
colorbar;
|
|
xlabel('$x l_o$', 'Interpreter', 'latex', 'FontSize', 14)
|
|
ylabel('$y l_o$', 'Interpreter', 'latex', 'FontSize', 14)
|
|
title('Stripe Lattice ansatz for $|\Psi(x,y)|^2$', 'Interpreter', 'latex', 'FontSize', 16);
|
|
xlabel('x');
|
|
ylabel('y');
|
|
colormap parula;
|
|
|
|
%% TRIANGULAR LATTICE
|
|
% 2-D
|
|
% Parameters
|
|
c1 = 0.2;
|
|
c2 = 0.2;
|
|
k = 3;
|
|
n = 1;
|
|
|
|
% Range for x and y
|
|
x = linspace(-2, 2, 500);
|
|
y = linspace(-2, 2, 500);
|
|
|
|
% Create a meshgrid for 2D
|
|
[X, Y] = meshgrid(x, y);
|
|
|
|
% Define the 2D function for a triangular lattice
|
|
f_xy = 1 + (c1 * cos(n * k * (2/sqrt(3)) * Y)) + (2 * c2 * cos(n * k * (1/sqrt(3)) * Y) .* cos(n * k * X));
|
|
|
|
% Plot the 2D image using imagesc
|
|
figure(2);
|
|
clf
|
|
imagesc(x, y, f_xy);
|
|
axis xy; % Make sure the y-axis is oriented correctly
|
|
colorbar;
|
|
xlabel('$x l_o$', 'Interpreter', 'latex', 'FontSize', 14)
|
|
ylabel('$y l_o$', 'Interpreter', 'latex', 'FontSize', 14)
|
|
title('Triangular Lattice ansatz for $|\Psi(x,y)|^2$', 'Interpreter', 'latex', 'FontSize', 16);
|
|
xlabel('x');
|
|
ylabel('y');
|
|
colormap parula;
|
|
|
|
%% HONEYCOMB LATTICE
|
|
% 2-D
|
|
% Parameters
|
|
c1 = 0.2;
|
|
c2 = 0.2;
|
|
k = 3;
|
|
n = 1;
|
|
|
|
% Range for x and y
|
|
x = linspace(-2, 2, 500);
|
|
y = linspace(-2, 2, 500);
|
|
|
|
% Create a meshgrid for 2D
|
|
[X, Y] = meshgrid(x, y);
|
|
|
|
% Define the 2D function for a honeycomb lattice
|
|
f_xy = 1 - (c1 * cos(n * k * (2/sqrt(3)) * X)) - (2 * c2 * cos(n * k * (1/sqrt(3)) * X) .* cos(n * k * Y));
|
|
|
|
% Plot the 2D image using imagesc
|
|
figure(3);
|
|
clf
|
|
imagesc(x, y, f_xy);
|
|
axis xy; % Make sure the y-axis is oriented correctly
|
|
colorbar;
|
|
xlabel('$x l_o$', 'Interpreter', 'latex', 'FontSize', 14)
|
|
ylabel('$y l_o$', 'Interpreter', 'latex', 'FontSize', 14)
|
|
title('Honeycomb Lattice ansatz for $|\Psi(x,y)|^2$', 'Interpreter', 'latex', 'FontSize', 16);
|
|
xlabel('x');
|
|
ylabel('y');
|
|
colormap parula;
|
|
|
|
%% GAUSSIAN + STRIPES
|
|
c = 1; % Fourier coefficient
|
|
k = 5 * pi; % Use π to get just a couple of modulations across domain
|
|
n = 5;
|
|
sigma_y = 0.5; % Narrow along Y to limit rows
|
|
sigma_x = 0.3; % Wider along X
|
|
|
|
% Grid
|
|
x = linspace(-2, 2, 500);
|
|
y = linspace(-2, 2, 500);
|
|
[X, Y] = meshgrid(x, y);
|
|
|
|
% Gaussian envelope — anisotropic (narrow in y)
|
|
G = exp(-((X.^2)/(2*sigma_x^2) + (Y.^2)/(2*sigma_y^2)));
|
|
|
|
% Modulation function
|
|
modulation = (1 + (c * cos(n * k * Y))) / (1 + 0.5 * c^2);
|
|
|
|
% Combine
|
|
f_modulated = G .* modulation;
|
|
|
|
% Plot
|
|
figure(4);
|
|
imagesc(x, y, f_modulated);
|
|
axis xy; axis equal tight;
|
|
colormap('hot');
|
|
colorbar;
|
|
title('Gaussian + Stripe Modulation');
|
|
xlabel('x'); ylabel('y');
|
|
|
|
%% GAUSSIAN + TRIANGULAR LATTICE
|
|
|
|
% Parameters
|
|
c1 = 0.2;
|
|
c2 = 0.2;
|
|
k = 5 * pi; % Use π to get just a couple of modulations across domain
|
|
n = 5;
|
|
sigma_y = 0.5; % Narrow along Y to limit rows
|
|
sigma_x = 0.3; % Wider along X
|
|
|
|
% Grid
|
|
x = linspace(-2, 2, 500);
|
|
y = linspace(-2, 2, 500);
|
|
[X, Y] = meshgrid(x, y);
|
|
|
|
% Gaussian envelope — anisotropic (narrow in y)
|
|
G = exp(-((X.^2)/(2*sigma_x^2) + (Y.^2)/(2*sigma_y^2)));
|
|
|
|
% Triangular lattice modulation
|
|
modulation = 1 + ...
|
|
(c1 * cos(n * k * (2/sqrt(3)) * Y)) + ...
|
|
(2 * c2 * cos(n * k * (1/sqrt(3)) * Y) .* cos(n * k * X));
|
|
|
|
% Normalize
|
|
modulation = modulation / (1 + c1 + 2*c2);
|
|
|
|
% Combine with Gaussian
|
|
f_modulated = G .* modulation;
|
|
|
|
% Plot
|
|
figure(5);
|
|
imagesc(x, y, f_modulated);
|
|
axis xy; axis equal tight;
|
|
colormap('hot');
|
|
colorbar;
|
|
title('Gaussian + Triangular lattice');
|
|
xlabel('x'); ylabel('y');
|
|
|
|
%% GAUSSIAN + HONEYCOMB LATTICE
|
|
|
|
% Parameters
|
|
c1 = 0.2;
|
|
c2 = 0.2;
|
|
k = 5 * pi; % Use π to get just a couple of modulations across domain
|
|
n = 5;
|
|
sigma_y = 0.5; % Narrow along Y to limit rows
|
|
sigma_x = 0.3; % Wider along X
|
|
|
|
% Grid
|
|
x = linspace(-2, 2, 500);
|
|
y = linspace(-2, 2, 500);
|
|
[X, Y] = meshgrid(x, y);
|
|
|
|
% Anisotropic Gaussian envelope
|
|
G = exp(-((X.^2)/(2*sigma_x^2) + (Y.^2)/(2*sigma_y^2)));
|
|
|
|
% Honeycomb lattice modulation
|
|
modulation = 1 - ...
|
|
(c1 * cos(n * k * (2/sqrt(3)) * X)) - ...
|
|
(2 * c2 * cos(n * k * (1/sqrt(3)) * X) .* cos(n * k * Y));
|
|
|
|
% Normalize (optional)
|
|
modulation = modulation / (1 + c1 + 2*c2);
|
|
|
|
% Combine with Gaussian
|
|
f_modulated = G .* modulation;
|
|
|
|
% Plot
|
|
figure(6);
|
|
imagesc(x, y, f_modulated);
|
|
axis xy; axis equal tight;
|
|
colormap('hot');
|
|
colorbar;
|
|
title('Gaussian + Honeycomb lattice');
|
|
xlabel('x'); ylabel('y');
|
|
|
|
|
|
|