537 lines
20 KiB
Matlab
537 lines
20 KiB
Matlab
%% ===== Settings =====
|
|
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ...
|
|
"/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ...
|
|
"/images/Vertical_Axis_Camera/in_situ_absorption"];
|
|
|
|
folderPath = "//DyLabNAS/Data/TwoDGas/2025/06/23/";
|
|
|
|
run = '0300';
|
|
|
|
folderPath = strcat(folderPath, run);
|
|
|
|
cam = 5;
|
|
|
|
angle = 0;
|
|
center = [1410, 2030];
|
|
span = [200, 200];
|
|
fraction = [0.1, 0.1];
|
|
|
|
pixel_size = 5.86e-6; % in meters
|
|
magnification = 23.94;
|
|
removeFringes = false;
|
|
|
|
ImagingMode = 'HighIntensity';
|
|
PulseDuration = 5e-6; % in s
|
|
|
|
% Fourier analysis settings
|
|
|
|
% Radial Spectral Distribution
|
|
theta_min = deg2rad(0);
|
|
theta_max = deg2rad(180);
|
|
N_radial_bins = 500;
|
|
Radial_Sigma = 2;
|
|
Radial_WindowSize = 5; % Choose an odd number for a centered moving average
|
|
|
|
% Angular Spectral Distribution
|
|
r_min = 10;
|
|
r_max = 20;
|
|
N_angular_bins = 180;
|
|
Angular_Threshold = 75;
|
|
Angular_Sigma = 2;
|
|
Angular_WindowSize = 5;
|
|
|
|
zoom_size = 50; % Zoomed-in region around center
|
|
|
|
% Plotting and saving
|
|
scan_parameter = 'ps_rot_mag_fin_pol_angle';
|
|
% scan_parameter = 'rot_mag_field';
|
|
scan_parameter_text = 'Angle = ';
|
|
% scan_parameter_text = 'BField = ';
|
|
|
|
savefileName = 'DropletsToStripes';
|
|
font = 'Bahnschrift';
|
|
|
|
if strcmp(savefileName, 'DropletsToStripes')
|
|
scan_groups = 0:5:45;
|
|
titleString = 'Droplets to Stripes';
|
|
elseif strcmp(savefileName, 'StripesToDroplets')
|
|
scan_groups = 45:-5:0;
|
|
titleString = 'Stripes to Droplets';
|
|
end
|
|
|
|
% Flags
|
|
skipUnshuffling = true;
|
|
skipPreprocessing = true;
|
|
skipMasking = true;
|
|
skipIntensityThresholding = true;
|
|
skipBinarization = true;
|
|
skipMovieRender = true;
|
|
skipSaveFigures = true;
|
|
|
|
%% ===== Load and compute OD image, rotate and extract ROI for analysis =====
|
|
% Get a list of all files in the folder with the desired file name pattern.
|
|
|
|
filePattern = fullfile(folderPath, '*.h5');
|
|
files = dir(filePattern);
|
|
refimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
|
absimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
|
|
|
for k = 1 : length(files)
|
|
baseFileName = files(k).name;
|
|
fullFileName = fullfile(files(k).folder, baseFileName);
|
|
|
|
fprintf(1, 'Now reading %s\n', fullFileName);
|
|
|
|
atm_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle));
|
|
bkg_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
|
|
dark_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
|
|
|
|
refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)';
|
|
absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img, ImagingMode, PulseDuration), center, span), fraction)';
|
|
end
|
|
|
|
%% ===== Fringe removal =====
|
|
|
|
if removeFringes
|
|
optrefimages = removefringesInImage(absimages, refimages);
|
|
absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :);
|
|
|
|
nimgs = size(absimages_fringe_removed,3);
|
|
od_imgs = cell(1, nimgs);
|
|
for i = 1:nimgs
|
|
od_imgs{i} = absimages_fringe_removed(:, :, i);
|
|
end
|
|
else
|
|
nimgs = size(absimages(:, :, :),3);
|
|
od_imgs = cell(1, nimgs);
|
|
for i = 1:nimgs
|
|
od_imgs{i} = absimages(:, :, i);
|
|
end
|
|
end
|
|
|
|
%% ===== Get rotation angles =====
|
|
scan_parameter_values = zeros(1, length(files));
|
|
|
|
% Get information about the '/globals' group
|
|
for k = 1 : length(files)
|
|
baseFileName = files(k).name;
|
|
fullFileName = fullfile(files(k).folder, baseFileName);
|
|
info = h5info(fullFileName, '/globals');
|
|
for i = 1:length(info.Attributes)
|
|
if strcmp(info.Attributes(i).Name, scan_parameter)
|
|
if strcmp(scan_parameter, 'ps_rot_mag_fin_pol_angle')
|
|
scan_parameter_values(k) = 180 - info.Attributes(i).Value;
|
|
else
|
|
scan_parameter_values(k) = info.Attributes(i).Value;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
%% ===== Extract g2 from experiment data =====
|
|
|
|
fft_imgs = cell(1, nimgs);
|
|
spectral_distribution = cell(1, nimgs);
|
|
theta_values = cell(1, nimgs);
|
|
|
|
N_shots = length(od_imgs);
|
|
|
|
% Compute FFT
|
|
for k = 1:N_shots
|
|
IMG = od_imgs{k};
|
|
[IMGFFT, IMGPR] = computeFourierTransform(IMG, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization);
|
|
|
|
% Size of original image (in pixels)
|
|
[Ny, Nx] = size(IMG);
|
|
|
|
% Real-space pixel size in micrometers after magnification
|
|
dx = pixel_size / magnification;
|
|
dy = dx; % assuming square pixels
|
|
|
|
% Real-space axes
|
|
x = ((1:Nx) - ceil(Nx/2)) * dx * 1E6;
|
|
y = ((1:Ny) - ceil(Ny/2)) * dy * 1E6;
|
|
|
|
% Reciprocal space increments (frequency domain, μm⁻¹)
|
|
dvx = 1 / (Nx * dx);
|
|
dvy = 1 / (Ny * dy);
|
|
|
|
% Frequency axes
|
|
vx = (-floor(Nx/2):ceil(Nx/2)-1) * dvx;
|
|
vy = (-floor(Ny/2):ceil(Ny/2)-1) * dvy;
|
|
|
|
% Wavenumber axes
|
|
kx_full = 2 * pi * vx * 1E-6; % μm⁻¹
|
|
ky_full = 2 * pi * vy * 1E-6;
|
|
|
|
% Crop FFT image around center
|
|
mid_x = floor(Nx/2);
|
|
mid_y = floor(Ny/2);
|
|
fft_imgs{k} = IMGFFT(mid_y-zoom_size:mid_y+zoom_size, mid_x-zoom_size:mid_x+zoom_size);
|
|
|
|
% Crop wavenumber axes to match fft_imgs{k}
|
|
kx = kx_full(mid_x - zoom_size : mid_x + zoom_size);
|
|
ky = ky_full(mid_y - zoom_size : mid_y + zoom_size);
|
|
|
|
[theta_values, S_theta] = computeAngularSpectralDistribution(fft_imgs{k}, r_min, r_max, N_angular_bins, Angular_Threshold, Angular_Sigma, []);
|
|
spectral_distribution{k} = S_theta;
|
|
end
|
|
|
|
% Create matrix of shape (N_shots x N_angular_bins)
|
|
delta_nkr_all = zeros(N_shots, N_angular_bins);
|
|
for k = 1:N_shots
|
|
delta_nkr_all(k, :) = spectral_distribution{k};
|
|
end
|
|
|
|
% Grouping by scan parameter value (e.g., alpha)
|
|
[unique_scan_parameter_values, ~, idx] = unique(scan_parameter_values);
|
|
|
|
% Number of unique parameter values
|
|
N_params = length(unique_scan_parameter_values);
|
|
|
|
% Preallocate result arrays
|
|
g2_all = zeros(N_params, N_angular_bins);
|
|
g2_error_all = zeros(N_params, N_angular_bins);
|
|
|
|
% Compute g2
|
|
for i = 1:N_params
|
|
group_idx = find(idx == i);
|
|
group_data = delta_nkr_all(group_idx, :);
|
|
|
|
for dtheta = 0:N_angular_bins-1
|
|
temp = zeros(length(group_idx), 1);
|
|
for j = 1:length(group_idx)
|
|
profile = group_data(j, :);
|
|
profile_shifted = circshift(profile, -dtheta, 2);
|
|
|
|
num = mean(profile .* profile_shifted);
|
|
denom = mean(profile.^2);
|
|
|
|
temp(j) = num / denom;
|
|
end
|
|
g2_all(i, dtheta+1) = mean(temp);
|
|
g2_error_all(i, dtheta+1) = std(temp) / sqrt(length(group_idx)); % Standard error
|
|
end
|
|
end
|
|
|
|
% Number of unique parameter values
|
|
nParams = size(g2_all, 1);
|
|
|
|
% Generate a colormap with enough unique colors
|
|
cmap = sky(nParams); % You can also try 'jet', 'turbo', 'hot', etc.
|
|
|
|
figure(1);
|
|
clf;
|
|
set(gcf,'Position',[100 100 950 750])
|
|
hold on;
|
|
legend_entries = cell(nParams, 1);
|
|
|
|
for i = 1:nParams
|
|
errorbar(theta_values/pi, g2_all(i, :), g2_error_all(i, :), ...
|
|
'o', 'Color', cmap(i,:), ...
|
|
'MarkerSize', 3, 'MarkerFaceColor', cmap(i,:), ...
|
|
'CapSize', 4);
|
|
if strcmp(scan_parameter, 'ps_rot_mag_fin_pol_angle')
|
|
legend_entries{i} = sprintf('$\\alpha = %g^\\circ$', unique_scan_parameter_values(i));
|
|
elseif strcmp(scan_parameter, 'rot_mag_field')
|
|
legend_entries{i} = sprintf('B = %.2f G', unique_scan_parameter_values(i));
|
|
end
|
|
end
|
|
|
|
ylim([0.0 1.0]); % Set y-axis limits here
|
|
set(gca, 'FontSize', 14);
|
|
hXLabel = xlabel('$\delta\theta / \pi$', 'Interpreter', 'latex');
|
|
hYLabel = ylabel('$g^{(2)}(\delta\theta)$', 'Interpreter', 'latex');
|
|
hTitle = title(titleString, 'Interpreter', 'tex');
|
|
legend(legend_entries, 'Interpreter', 'latex', 'Location', 'bestoutside');
|
|
set([hXLabel, hYLabel], 'FontName', font)
|
|
set([hXLabel, hYLabel], 'FontSize', 14)
|
|
set(hTitle, 'FontName', font, 'FontSize', 16, 'FontWeight', 'bold'); % Set font and size for title
|
|
grid on;
|
|
|
|
%% Helper Functions
|
|
function [IMGFFT, IMGPR] = computeFourierTransform(I, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization)
|
|
% computeFourierSpectrum - Computes the 2D Fourier power spectrum
|
|
% of binarized and enhanced lattice image features, with optional central mask.
|
|
%
|
|
% Inputs:
|
|
% I - Grayscale or RGB image matrix
|
|
%
|
|
% Output:
|
|
% F_mag - 2D Fourier power spectrum (shifted)
|
|
|
|
if ~skipPreprocessing
|
|
% Preprocessing: Denoise
|
|
filtered = imgaussfilt(I, 10);
|
|
IMGPR = I - filtered; % adjust sigma as needed
|
|
else
|
|
IMGPR = I;
|
|
end
|
|
|
|
if ~skipMasking
|
|
[rows, cols] = size(IMGPR);
|
|
[X, Y] = meshgrid(1:cols, 1:rows);
|
|
% Elliptical mask parameters
|
|
cx = cols / 2;
|
|
cy = rows / 2;
|
|
|
|
% Shifted coordinates
|
|
x = X - cx;
|
|
y = Y - cy;
|
|
|
|
% Ellipse semi-axes
|
|
rx = 0.4 * cols;
|
|
ry = 0.2 * rows;
|
|
|
|
% Rotation angle in degrees -> radians
|
|
theta_deg = 30; % Adjust as needed
|
|
theta = deg2rad(theta_deg);
|
|
|
|
% Rotated ellipse equation
|
|
cos_t = cos(theta);
|
|
sin_t = sin(theta);
|
|
|
|
x_rot = (x * cos_t + y * sin_t);
|
|
y_rot = (-x * sin_t + y * cos_t);
|
|
|
|
ellipseMask = (x_rot.^2) / rx^2 + (y_rot.^2) / ry^2 <= 1;
|
|
|
|
% Apply cutout mask
|
|
IMGPR = IMGPR .* ellipseMask;
|
|
end
|
|
|
|
if ~skipIntensityThresholding
|
|
% Apply global intensity threshold mask
|
|
intensity_thresh = 0.20;
|
|
intensity_mask = IMGPR > intensity_thresh;
|
|
IMGPR = IMGPR .* intensity_mask;
|
|
end
|
|
|
|
if ~skipBinarization
|
|
% Adaptive binarization and cleanup
|
|
IMGPR = imbinarize(IMGPR, 'adaptive', 'Sensitivity', 0.0);
|
|
IMGPR = imdilate(IMGPR, strel('disk', 2));
|
|
IMGPR = imerode(IMGPR, strel('disk', 1));
|
|
IMGPR = imfill(IMGPR, 'holes');
|
|
F = fft2(double(IMGPR)); % Compute 2D Fourier Transform
|
|
IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center
|
|
else
|
|
F = fft2(double(IMGPR)); % Compute 2D Fourier Transform
|
|
IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center
|
|
end
|
|
end
|
|
|
|
function [theta_vals, S_theta] = computeAngularSpectralDistribution(IMGFFT, r_min, r_max, num_bins, threshold, sigma, windowSize)
|
|
% Apply threshold to isolate strong peaks
|
|
IMGFFT(IMGFFT < threshold) = 0;
|
|
|
|
% Prepare polar coordinates
|
|
[ny, nx] = size(IMGFFT);
|
|
[X, Y] = meshgrid(1:nx, 1:ny);
|
|
cx = ceil(nx/2);
|
|
cy = ceil(ny/2);
|
|
R = sqrt((X - cx).^2 + (Y - cy).^2);
|
|
Theta = atan2(Y - cy, X - cx); % range [-pi, pi]
|
|
|
|
% Choose radial band
|
|
radial_mask = (R >= r_min) & (R <= r_max);
|
|
|
|
% Initialize angular structure factor
|
|
S_theta = zeros(1, num_bins);
|
|
theta_vals = linspace(0, pi, num_bins);
|
|
|
|
% Loop through angle bins
|
|
for i = 1:num_bins
|
|
angle_start = (i-1) * pi / num_bins;
|
|
angle_end = i * pi / num_bins;
|
|
angle_mask = (Theta >= angle_start & Theta < angle_end);
|
|
bin_mask = radial_mask & angle_mask;
|
|
fft_angle = IMGFFT .* bin_mask;
|
|
S_theta(i) = sum(sum(abs(fft_angle).^2));
|
|
end
|
|
|
|
% Smooth using either Gaussian or moving average
|
|
if exist('sigma', 'var') && ~isempty(sigma)
|
|
% Gaussian convolution
|
|
half_width = ceil(3 * sigma);
|
|
x = -half_width:half_width;
|
|
gauss_kernel = exp(-x.^2 / (2 * sigma^2));
|
|
gauss_kernel = gauss_kernel / sum(gauss_kernel);
|
|
% Circular convolution
|
|
S_theta = conv([S_theta(end-half_width+1:end), S_theta, S_theta(1:half_width)], ...
|
|
gauss_kernel, 'same');
|
|
S_theta = S_theta(half_width+1:end-half_width);
|
|
elseif exist('windowSize', 'var') && ~isempty(windowSize)
|
|
% Moving average via convolution (circular)
|
|
pad = floor(windowSize / 2);
|
|
kernel = ones(1, windowSize) / windowSize;
|
|
S_theta = conv([S_theta(end-pad+1:end), S_theta, S_theta(1:pad)], kernel, 'same');
|
|
S_theta = S_theta(pad+1:end-pad);
|
|
end
|
|
end
|
|
|
|
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
|
|
% image must be a 2D numerical array
|
|
[dim1, dim2] = size(img);
|
|
|
|
s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction));
|
|
s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2);
|
|
s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction));
|
|
s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2);
|
|
|
|
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
|
|
end
|
|
|
|
function ret = subtractBackgroundOffset(img, fraction)
|
|
% Remove the background from the image.
|
|
% :param dataArray: The image
|
|
% :type dataArray: xarray DataArray
|
|
% :param x_fraction: The fraction of the pixels used in x axis
|
|
% :type x_fraction: float
|
|
% :param y_fraction: The fraction of the pixels used in y axis
|
|
% :type y_fraction: float
|
|
% :return: The image after removing background
|
|
% :rtype: xarray DataArray
|
|
|
|
x_fraction = fraction(1);
|
|
y_fraction = fraction(2);
|
|
offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction);
|
|
ret = img - offset;
|
|
end
|
|
|
|
function ret = cropODImage(img, center, span)
|
|
% Crop the image according to the region of interest (ROI).
|
|
% :param dataSet: The images
|
|
% :type dataSet: xarray DataArray or DataSet
|
|
% :param center: The center of region of interest (ROI)
|
|
% :type center: tuple
|
|
% :param span: The span of region of interest (ROI)
|
|
% :type span: tuple
|
|
% :return: The cropped images
|
|
% :rtype: xarray DataArray or DataSet
|
|
|
|
x_start = floor(center(1) - span(1) / 2);
|
|
x_end = floor(center(1) + span(1) / 2);
|
|
y_start = floor(center(2) - span(2) / 2);
|
|
y_end = floor(center(2) + span(2) / 2);
|
|
|
|
ret = img(y_start:y_end, x_start:x_end);
|
|
end
|
|
|
|
function imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime)
|
|
%CALCULATEODIMAGE Calculates the optical density (OD) image for absorption imaging.
|
|
%
|
|
% imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime)
|
|
%
|
|
% Inputs:
|
|
% imageAtom - Image with atoms
|
|
% imageBackground - Image without atoms
|
|
% imageDark - Image without light
|
|
% mode - 'LowIntensity' (default) or 'HighIntensity'
|
|
% exposureTime - Required only for 'HighIntensity' [in seconds]
|
|
%
|
|
% Output:
|
|
% imageOD - Computed OD image
|
|
%
|
|
|
|
arguments
|
|
imageAtom (:,:) {mustBeNumeric}
|
|
imageBackground (:,:) {mustBeNumeric}
|
|
imageDark (:,:) {mustBeNumeric}
|
|
mode char {mustBeMember(mode, {'LowIntensity', 'HighIntensity'})} = 'LowIntensity'
|
|
exposureTime double = NaN
|
|
end
|
|
|
|
% Compute numerator and denominator
|
|
numerator = imageBackground - imageDark;
|
|
denominator = imageAtom - imageDark;
|
|
|
|
% Avoid division by zero
|
|
numerator(numerator == 0) = 1;
|
|
denominator(denominator == 0) = 1;
|
|
|
|
% Calculate OD based on mode
|
|
switch mode
|
|
case 'LowIntensity'
|
|
imageOD = -log(abs(denominator ./ numerator));
|
|
|
|
case 'HighIntensity'
|
|
if isnan(exposureTime)
|
|
error('Exposure time must be provided for HighIntensity mode.');
|
|
end
|
|
imageOD = abs(denominator ./ numerator);
|
|
imageOD = -log(imageOD) + (numerator - denominator) ./ (7000 * (exposureTime / 5e-6));
|
|
end
|
|
|
|
end
|
|
|
|
function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
|
|
% removefringesInImage - Fringe removal and noise reduction from absorption images.
|
|
% Creates an optimal reference image for each absorption image in a set as
|
|
% a linear combination of reference images, with coefficients chosen to
|
|
% minimize the least-squares residuals between each absorption image and
|
|
% the optimal reference image. The coefficients are obtained by solving a
|
|
% linear set of equations using matrix inverse by LU decomposition.
|
|
%
|
|
% Application of the algorithm is described in C. F. Ockeloen et al, Improved
|
|
% detection of small atom numbers through image processing, arXiv:1007.2136 (2010).
|
|
%
|
|
% Syntax:
|
|
% [optrefimages] = removefringesInImage(absimages,refimages,bgmask);
|
|
%
|
|
% Required inputs:
|
|
% absimages - Absorption image data,
|
|
% typically 16 bit grayscale images
|
|
% refimages - Raw reference image data
|
|
% absimages and refimages are both cell arrays containing
|
|
% 2D array data. The number of refimages can differ from the
|
|
% number of absimages.
|
|
%
|
|
% Optional inputs:
|
|
% bgmask - Array specifying background region used,
|
|
% 1=background, 0=data. Defaults to all ones.
|
|
% Outputs:
|
|
% optrefimages - Cell array of optimal reference images,
|
|
% equal in size to absimages.
|
|
%
|
|
|
|
% Dependencies: none
|
|
%
|
|
% Authors: Shannon Whitlock, Caspar Ockeloen
|
|
% Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and
|
|
% S. Whitlock, Improved detection of small atom numbers through
|
|
% image processing, arXiv:1007.2136
|
|
% Email:
|
|
% May 2009; Last revision: 11 August 2010
|
|
|
|
% Process inputs
|
|
|
|
% Set variables, and flatten absorption and reference images
|
|
nimgs = size(absimages,3);
|
|
nimgsR = size(refimages,3);
|
|
xdim = size(absimages(:,:,1),2);
|
|
ydim = size(absimages(:,:,1),1);
|
|
|
|
R = single(reshape(refimages,xdim*ydim,nimgsR));
|
|
A = single(reshape(absimages,xdim*ydim,nimgs));
|
|
optrefimages=zeros(size(absimages)); % preallocate
|
|
|
|
if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end
|
|
k = find(bgmask(:)==1); % Index k specifying background region
|
|
|
|
% Ensure there are no duplicate reference images
|
|
% R=unique(R','rows')'; % comment this line if you run out of memory
|
|
|
|
% Decompose B = R*R' using singular value or LU decomposition
|
|
[L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition
|
|
|
|
for j=1:nimgs
|
|
b=R(k,:)'*A(k,j);
|
|
% Obtain coefficients c which minimise least-square residuals
|
|
lower.LT = true; upper.UT = true;
|
|
c = linsolve(U,linsolve(L,b(p,:),lower),upper);
|
|
|
|
% Compute optimised reference image
|
|
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
|
|
end
|
|
end |