85 lines
4.4 KiB
Matlab
85 lines
4.4 KiB
Matlab
function [LoadingRate, StandardError] = calculateLoadingRate(this, FinalDynamicalQuantities)
|
|
|
|
NumberOfLoadedAtoms = zeros(1, this.NumberOfAtoms);
|
|
AutocorrelationFunction = zeros(1, this.NumberOfAtoms);
|
|
|
|
for i = 1:this.NumberOfAtoms
|
|
FinalPosition = FinalDynamicalQuantities(i,1:3);
|
|
DivergenceAngle = atan(sqrt((FinalPosition(1)^2+FinalPosition(3)^2)/(FinalPosition(2)^2)));
|
|
if (DivergenceAngle <= this.MOTExitDivergence) && (FinalPosition(2) >= 0)
|
|
if i == 1
|
|
NumberOfLoadedAtoms(1) = 1;
|
|
else
|
|
NumberOfLoadedAtoms(i) = NumberOfLoadedAtoms(i-1) + 1;
|
|
end
|
|
|
|
else
|
|
if i == 1
|
|
NumberOfLoadedAtoms(1) = 0;
|
|
else
|
|
NumberOfLoadedAtoms(i) = NumberOfLoadedAtoms(i-1);
|
|
end
|
|
end
|
|
end
|
|
|
|
for i = 1:this.NumberOfAtoms-1
|
|
MeanTrappingEfficiency = 0;
|
|
MeanLoadingRateShifted = 0;
|
|
for j = 1:this.NumberOfAtoms-i
|
|
MeanTrappingEfficiency = MeanTrappingEfficiency + NumberOfLoadedAtoms(j)/j;
|
|
MeanLoadingRateShifted = MeanLoadingRateShifted + (NumberOfLoadedAtoms(i+j))/(i+j);
|
|
AutocorrelationFunction(i) = AutocorrelationFunction(i) + ((NumberOfLoadedAtoms(j)/j).*(NumberOfLoadedAtoms(i+j)/(i+j)));
|
|
end
|
|
AutocorrelationFunction(i) = ((this.NumberOfAtoms-i)^-1 * (AutocorrelationFunction(i)) - ((this.NumberOfAtoms-i)^-1 * MeanTrappingEfficiency * MeanLoadingRateShifted));
|
|
end
|
|
|
|
if AutocorrelationFunction(1)~=0 % To handle cases where there is no atom loading
|
|
|
|
AutocorrelationFunction = AutocorrelationFunction./AutocorrelationFunction(1);
|
|
x = linspace(1, this.NumberOfAtoms, this.NumberOfAtoms);
|
|
[FitObject,~] = fit(x',AutocorrelationFunction',"exp(-x/n)",'Startpoint', 100);
|
|
CorrelationFactor = FitObject.n; % n is the autocorrelation factor
|
|
SumOfAllMeanTrappingEfficiencies = 0;
|
|
NumberOfBlocks = floor(this.NumberOfAtoms/(2*CorrelationFactor+1));
|
|
MeanTrappingEfficiencyInEachBlock = zeros(1,NumberOfBlocks);
|
|
BlockNumberLimit = min(NumberOfBlocks-1,5);
|
|
|
|
% Jackknife method is a systematic way of obtaining the “standard deviation” error of a
|
|
% set of stochastic measurements:
|
|
% 1. Calculate average (or some function f) from the full dataset.
|
|
% 2. Divide data into M blocks, with block length ≫ correlation factor . This is done in order to
|
|
% get rid of autocorrelations; if there are no correlations, block length can be 1.
|
|
% 3. For each m = 1 . . .M, take away block m and calculate the average using
|
|
% the data from all other blocks.
|
|
% 4. Estimate the error by calculating the deviation of the average in each block from average of the full dataset
|
|
|
|
%Jackknife estimate of the loading rate
|
|
|
|
for i = 1:NumberOfBlocks-BlockNumberLimit
|
|
MeanTrappingEfficiencyInEachBlock(i) = NumberOfLoadedAtoms(this.NumberOfAtoms - ceil((i-1)*(2*CorrelationFactor+1))) / (this.NumberOfAtoms - ceil((i-1)*(2*CorrelationFactor+1)));
|
|
SumOfAllMeanTrappingEfficiencies = SumOfAllMeanTrappingEfficiencies + MeanTrappingEfficiencyInEachBlock(i);
|
|
end
|
|
|
|
MeanTrappingEfficiency = SumOfAllMeanTrappingEfficiencies / (NumberOfBlocks-BlockNumberLimit);
|
|
|
|
c = integral(@(velocity) sqrt(2 / pi) * (Helper.PhysicsConstants.Dy164Mass/(Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperatureinKelvin)) ...
|
|
* velocity.^3 .* exp(-velocity.^2 .* (Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ...
|
|
* this.OvenTemperatureinKelvin))), 0, this.VelocityCutoff);
|
|
|
|
LoadingRate = MeanTrappingEfficiency * c * this.calculateFreeMolecularRegimeFlux();
|
|
|
|
% Jackknife estimate of the variance of the loading rate
|
|
Variance = 0;
|
|
for i = 1:NumberOfBlocks-BlockNumberLimit
|
|
Variance = Variance + (MeanTrappingEfficiencyInEachBlock(i) - MeanTrappingEfficiency)^2;
|
|
end
|
|
|
|
StandardError = sqrt((((NumberOfBlocks-BlockNumberLimit) - 1) / (NumberOfBlocks-BlockNumberLimit)) * Variance);
|
|
|
|
else
|
|
LoadingRate = 0;
|
|
StandardError = 0;
|
|
end
|
|
|
|
end
|