Calculations/Dipolar-Gas-Simulator/+VariationalSolver2D/@DipolarGas/propagateWavefunction.m

114 lines
4.1 KiB
Matlab

function [psi, Observ] = propagateWavefunction(this, psi, Params, VParams, Transf, VDk, V, t_idx, Observ)
set(0,'defaulttextInterpreter','latex')
set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
dt =-1j*abs(this.TimeStepSize); % Imaginary Time
KEop = 0.5*(Transf.KX.^2+Transf.KY.^2);
Observ.res = 1;
AdaptIdx = 0;
% Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,VParams,Transf,VDk,V);
E = E/Params.N;
Observ.EVec = [Observ.EVec E];
% Chemical Potential
muchem = this.Calculator.calculateChemicalPotential(psi,Params,VParams,Transf,VDk,V);
Observ.mucVec = [Observ.mucVec muchem];
% Normalized residuals
res = this.Calculator.calculateNormalizedResiduals(psi,Params,VParams,Transf,VDk,V,muchem);
Observ.residual = [Observ.residual res];
g_eff = Params.gs * (1/(sqrt(2*pi)*VParams.ell));
gamma_eff = Params.gammaQF * (sqrt(2/5)/(pi^(3/4)*VParams.ell^(3/2)));
Ez = (0.25*VParams.ell^2) + (0.25*Params.gz*VParams.ell^2);
pb = Helper.ProgressBar();
fprintf('\n')
pb.run('Propagating wavefunction in imaginary time: ');
while t_idx < Params.sim_time_cut_off
% kin
psi = fftn(psi);
psi = psi.*exp(-0.5*1i*dt*KEop);
psi = ifftn(psi);
% DDI
frho = fftn(abs(psi).^2);
Phi = real(ifftn(frho.*VDk));
% Real-space
psi = psi.*exp(-1i*dt*(V + Ez + g_eff*abs(psi).^2 + gamma_eff*abs(psi).^3 + Params.gdd*Phi/(sqrt(2*pi)*VParams.ell) - muchem));
% kin
psi = fftn(psi);
psi = psi.*exp(-0.5*1i*dt*KEop);
psi = ifftn(psi);
% Renorm
Norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy;
psi = sqrt(Params.N)*psi/sqrt(Norm);
muchem = this.Calculator.calculateChemicalPotential(psi,Params,VParams,Transf,VDk,V);
if mod(t_idx,1000) == 0
% Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,VParams,Transf,VDk,V);
E = E/Params.N;
Observ.EVec = [Observ.EVec E];
% Chemical potential
Observ.mucVec = [Observ.mucVec muchem];
% Normalized residuals
res = this.Calculator.calculateNormalizedResiduals(psi,Params,VParams,Transf,VDk,V,muchem);
Observ.residual = [Observ.residual res];
Observ.res_idx = Observ.res_idx + 1;
%Adaptive time step -- Careful, this can quickly get out of control
relres = abs(Observ.residual(Observ.res_idx)-Observ.residual(Observ.res_idx-1))/Observ.residual(Observ.res_idx);
if relres <1e-5
if AdaptIdx > 4 && abs(dt) > Params.mindt
dt = dt / 2;
AdaptIdx = 0;
elseif AdaptIdx > 4 && abs(dt) < Params.mindt
break
elseif Observ.residual(Observ.res_idx) < Params.rtol
break
else
AdaptIdx = AdaptIdx + 1;
end
else
AdaptIdx = 0;
end
end
if any(isnan(psi(:)))
disp('NaNs encountered!')
break
end
t_idx=t_idx+1;
pb.run(100*t_idx/Params.sim_time_cut_off);
end
% Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,VParams,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
% Normalized residuals
res = this.Calculator.calculateNormalizedResiduals(psi,Params,VParams,Transf,VDk,V,muchem);
Observ.residual = [Observ.residual res];
Observ.res_idx = Observ.res_idx + 1;
% Chemical potential
Observ.mucVec = [Observ.mucVec muchem];
pb.run(' - Job Completed!');
clear pb.run
end