Calculations/Dipolar-Gas-Simulator/+Scripts/run_on_cluster.m

139 lines
5.6 KiB
Matlab

%%
% To reproduce results from the Blair Blakie paper:
% (n*add^2, as/add)
% Critical point: (0.0978, 0.784); Triangular phase: (0.0959, 0.750); Stripe phase: (0.144, 0.765); Honeycomb phase: (0.192, 0.780)
% N = ((n*add^2)/Params.add^2) * (Params.Lx *1E-6)^2
% Critical point: N = 2.0427e+07; Triangular phase: N = 2.0030e+07; Stripe phase: N = 3.0077e+07; Honeycomb phase: N = 4.0102e+07 for dimensions fixed to 100
% as = ((as/add)*Params.add)/Params.a0
% Critical point: 102.5133; Triangular phase: 98.0676; Stripe phase: 100.0289; Honeycomb phase: 101.9903
%% - Create Variational2D and Calculator object with specified options
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 2.0030e+07;
OptionsStruct.DipolarPolarAngle = 0;
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 98.0676;
OptionsStruct.TrapFrequencies = [10, 10, 72.4];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [256, 256];
OptionsStruct.Dimensions = [100, 100];
OptionsStruct.TimeStepSize = 100E-6; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-04;
OptionsStruct.NoiseScaleFactor = 4;
OptionsStruct.MaxIterations = 20;
OptionsStruct.VariationalWidth = 5.7;
OptionsStruct.WidthLowerBound = 0.2;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 1e-3;
OptionsStruct.PlotLive = false;
OptionsStruct.JobNumber = 1;
OptionsStruct.RunOnGPU = true;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Data_TriangularPhase';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%{
%% - Create Variational2D and Calculator object with specified options
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 3.0077e+07;
OptionsStruct.DipolarPolarAngle = 0;
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 100.0289;
OptionsStruct.TrapFrequencies = [10, 10, 72.4];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [256, 256];
OptionsStruct.Dimensions = [100, 100];
OptionsStruct.TimeStepSize = 100E-6; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-04;
OptionsStruct.NoiseScaleFactor = 4;
OptionsStruct.MaxIterations = 20;
OptionsStruct.VariationalWidth = 5.7;
OptionsStruct.WidthLowerBound = 0.2;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 1e-3;
OptionsStruct.PlotLive = false;
OptionsStruct.JobNumber = 2;
OptionsStruct.RunOnGPU = true;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Data_StripePhase';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%% - Create Variational2D and Calculator object with specified options
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 4.0102e+07;
OptionsStruct.DipolarPolarAngle = 0;
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 101.9903;
OptionsStruct.TrapFrequencies = [10, 10, 72.4];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [256, 256];
OptionsStruct.Dimensions = [100, 100];
OptionsStruct.TimeStepSize = 100E-6; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-04;
OptionsStruct.NoiseScaleFactor = 4;
OptionsStruct.MaxIterations = 20;
OptionsStruct.VariationalWidth = 5.7;
OptionsStruct.WidthLowerBound = 0.2;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 1e-3;
OptionsStruct.PlotLive = false;
OptionsStruct.JobNumber = 3;
OptionsStruct.RunOnGPU = true;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Data_HoneycombPhase';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%}