Calculations/Dipolar-Gas-Simulator/+Simulator/@DipolarGas/propagateWavefunction.m

187 lines
7.4 KiB
Matlab

function [psi] = propagateWavefunction(this,psi,Params,Transf,VDk,V,t_idx,Observ)
set(0,'defaulttextInterpreter','latex')
set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
switch this.SimulationMode
case 'ImaginaryTimeEvolution'
dt=-1j*abs(this.TimeStepSize);
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
Observ.residual = 1; Observ.res = 1;
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
AdaptIdx = 0;
pb = Helper.ProgressBar();
pb.run('Running simulation in imaginary time: ');
while t_idx < Params.sim_time_cut_off
%kin
psi = fftn(psi);
psi = psi.*exp(-0.5*1i*dt*KEop);
psi = ifftn(psi);
%DDI
frho = fftn(abs(psi).^2);
Phi = real(ifftn(frho.*VDk));
%Real-space
psi = psi.*exp(-1i*dt*(V + Params.gs*abs(psi).^2 + Params.gdd*Phi + Params.gammaQF*abs(psi).^3 - muchem));
%kin
psi = fftn(psi);
psi = psi.*exp(-0.5*1i*dt*KEop);
psi = ifftn(psi);
%Renorm
Norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
psi = sqrt(Params.N)*psi/sqrt(Norm);
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
if mod(t_idx,1000) == 0
%Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
%Chemical potential
Observ.mucVec = [Observ.mucVec muchem];
%Normalized residuals
res = this.Calculator.calculateNormalizedResiduals(psi,Params,Transf,VDk,V,muchem);
Observ.residual = [Observ.residual res];
Observ.res_idx = Observ.res_idx + 1;
save(sprintf('./Data/Run_%03i/psi_gs.mat',Params.njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V');
%Adaptive time step -- Careful, this can quickly get out of control
relres = abs(Observ.residual(Observ.res_idx)-Observ.residual(Observ.res_idx-1))/Observ.residual(Observ.res_idx);
if relres <1e-5
if AdaptIdx > 4 && abs(dt) > Params.mindt
dt = dt / 2;
fprintf('Time step changed to '); disp(dt);
AdaptIdx = 0;
elseif AdaptIdx > 4 && abs(dt) < Params.mindt
break
else
AdaptIdx = AdaptIdx + 1;
end
else
AdaptIdx = 0;
end
end
if any(isnan(psi(:)))
disp('NaNs encountered!')
break
end
t_idx=t_idx+1;
pb.run(100*t_idx/Params.sim_time_cut_off);
end
%Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
% Phase coherence
[PhaseC] = this.Calculator.calculatePhaseCoherence(psi,Transf,Params);
Observ.PCVec = [Observ.PCVec PhaseC];
Observ.res_idx = Observ.res_idx + 1;
pb.run(' - Job Completed!');
disp('Saving data...');
save(sprintf('./Data/Run_%03i/psi_gs.mat',Params.njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V');
disp('Save complete!');
case 'RealTimeEvolution'
dt = abs(this.TimeStepSize);
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
pb = Helper.ProgressBar();
pb.run('Running simulation in real time: ');
while t_idx < Params.sim_time_cut_off
% Parameters at time t
%kin
psi = fftn(psi);
psi = psi.*exp(-0.5*1i*dt*KEop);
psi = ifftn(psi);
%DDI
frho = fftn(abs(psi).^2);
Phi = real(ifftn(frho.*VDk));
%Real-space
psi = psi.*exp(-1i*dt*(V + Params.gs*abs(psi).^2 + Params.gammaQF*abs(psi).^3 + Params.gdd*Phi - muchem));
%kin
psi = fftn(psi);
psi = psi.*exp(-0.5*1i*dt*KEop);
psi = ifftn(psi);
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
if mod(t_idx,1000)==0
%Change in Normalization
Norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz; % normalisation
Observ.NormVec = [Observ.NormVec Norm];
%Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
% Phase coherence
[PhaseC] = this.Calculator.calculatePhaseCoherence(psi,Transf);
Observ.PCVec = [Observ.PCVec PhaseC];
Observ.tVecPlot = [Observ.tVecPlot tVal];
Observ.res_idx = Observ.res_idx + 1;
save(sprintf('./Data/Run_%03i/TimeEvolution/psi_%i.mat',Params.njob,Observ.res_idx),'psi','muchem','Observ','t_idx');
end
if any(isnan(psi(:)))
disp('NaNs encountered!')
break
end
t_idx=t_idx+1;
pb.run(100*t_idx/Params.sim_time_cut_off);
end
%Change in Normalization
Norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz; % normalisation
Observ.NormVec = [Observ.NormVec Norm];
%Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
% Phase coherence
[PhaseC] = this.Calculator.calculatePhaseCoherence(psi,Transf);
Observ.PCVec = [Observ.PCVec PhaseC];
Observ.tVecPlot = [Observ.tVecPlot tVal];
Observ.res_idx = Observ.res_idx + 1;
pb.run(' - Run Completed!');
disp('Saving data...');
save(sprintf('./Data/Run_%03i/TimeEvolution/psi_%i.mat',Params.njob,Observ.res_idx),'psi','muchem','Observ','t_idx');
disp('Save complete!');
otherwise
disp('Choose a valid DDI cutoff type!')
return
end
end