Calculations/Data-Analyzer/computeBondOrderParameters.m

179 lines
5.3 KiB
Matlab

function [psi_global, order_ratio, Npoints] = computeBondOrderParameters(I)
% Analyze bond-orientational order in a 2D image, restricted to a circular region
%
% Input:
% I - 2D grayscale image (double or uint8)
%
% Outputs:
% psi_global - struct with fields psi2, psi4, psi6 (⟨|ψₙ|⟩ values)
% order_ratio - scalar = ⟨|ψ₆|⟩ / ⟨|ψ₂|⟩
% Npoints - number of detected points used
%% Step 1: Create mask
[Ny, Nx] = size(I);
% Parameters for elliptical mask
a = Nx / 2.25; % Semi-major axis (x-direction)
b = Ny / 2.25; % Semi-minor axis (y-direction)
theta_deg = 0; % Rotation angle in degrees
theta = deg2rad(theta_deg); % Convert to radians
% Meshgrid coordinates
[Ny, Nx] = size(I);
[X, Y] = meshgrid(1:Nx, 1:Ny);
cx = Nx / 2;
cy = Ny / 2;
% Shifted coordinates
Xc = X - cx;
Yc = Y - cy;
% Rotate coordinates
Xr = cos(theta) * Xc + sin(theta) * Yc;
Yr = -sin(theta) * Xc + cos(theta) * Yc;
% Elliptical mask equation
mask = (Xr / a).^2 + (Yr / b).^2 <= 1;
% Apply mask to image
I = double(I) .* mask;
%% Step 2: Detect local maxima within mask
I_smooth = imgaussfilt(I, 2);
peaks = imregionalmax(I_smooth);
[y, x] = find(peaks);
Npoints = length(x);
if Npoints < 6
warning('Too few points (%d) to compute bond order meaningfully.', Npoints);
psi_global = struct('psi2', NaN, 'psi4', NaN, 'psi6', NaN);
order_ratio = NaN;
return;
end
%% Step 3: Try Delaunay triangulation
use_kNN = false;
try
tri = delaunay(x, y);
catch
warning('Delaunay triangulation failed - falling back to kNN neighbor search');
use_kNN = true;
end
% 3) Find neighbors
neighbors = cell(Npoints, 1);
if ~use_kNN
% Use Delaunay neighbors
for i = 1:size(tri,1)
for j = 1:3
idx = tri(i,j);
nbrs = tri(i,[1 2 3] ~= j);
neighbors{idx} = unique([neighbors{idx}, nbrs]);
end
end
else
% Use kNN neighbors (e.g. k=6)
k = min(6, Npoints-1);
pts = [x, y];
[idx, ~] = knnsearch(pts, pts, 'K', k+1); % +1 for self
for j = 1:Npoints
neighbors{j} = idx(j, 2:end);
end
end
% 4) Compute bond order parameters
psi2 = zeros(Npoints,1);
psi4 = zeros(Npoints,1);
psi6 = zeros(Npoints,1);
for j = 1:Npoints
nbrs = neighbors{j};
nbrs(nbrs == j) = [];
if isempty(nbrs)
continue;
end
angles = atan2(y(nbrs) - y(j), x(nbrs) - x(j));
psi2(j) = abs(mean(exp(1i * 2 * angles)));
psi4(j) = abs(mean(exp(1i * 4 * angles)));
psi6(j) = abs(mean(exp(1i * 6 * angles)));
end
psi_global.psi2 = mean(psi2);
psi_global.psi4 = mean(psi4);
psi_global.psi6 = mean(psi6);
order_ratio = psi_global.psi6 / psi_global.psi2;
% --- After neighbors are found and (x,y) extracted ---
% 1) Angular distribution of all bonds pooled from all points
all_angles = [];
for j = 1:Npoints
nbrs = neighbors{j};
nbrs(nbrs == j) = [];
if isempty(nbrs), continue; end
angles = atan2(y(nbrs)-y(j), x(nbrs)-x(j));
all_angles = [all_angles; angles(:)];
end
% Histogram of bond angles over [-pi, pi]
nbins = 36; % 10 degree bins
edges = linspace(-pi, pi, nbins+1);
counts = histcounts(all_angles, edges, 'Normalization','probability');
% Circular variance of bond angles
R = abs(mean(exp(1i*all_angles)));
circ_variance = 1 - R; % 0 means angles clustered; 1 means uniform
% 2) Positional correlation function g(r) estimate
% Compute pairwise distances
coords = [x y];
D = pdist(coords);
max_r = min([Nx, Ny])/2; % max radius for g(r)
% Compute histogram of distances
dr = 1; % bin width in pixels (adjust)
r_edges = 0:dr:max_r;
[counts_r, r_bins] = histcounts(D, r_edges);
% Normalize g(r) by ideal gas distribution (circle annulus area)
r_centers = r_edges(1:end-1) + dr/2;
area_annulus = pi*((r_edges(2:end)).^2 - (r_edges(1:end-1)).^2);
density = Npoints / (Nx*Ny);
g_r = counts_r ./ (density * area_annulus * Npoints);
figure(1);
clf
set(gcf,'Position',[500 100 1250 500])
t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % 1x4 grid
nexttile
imshow(I, []);
hold on;
scatter(x, y, 30, 'w', 'filled');
hold off;
colormap(Helper.Colormaps.plasma()); % Example colormap for original image plot
cbar1 = colorbar;
cbar1.Label.Interpreter = 'latex';
xlabel('$x$ ($\mu$m)', 'Interpreter', 'latex', 'FontSize', 14);
ylabel('$y$ ($\mu$m)', 'Interpreter', 'latex', 'FontSize', 14);
title('$|\Psi(x,y)|^2$', 'Interpreter', 'latex', 'FontSize', 14);
axis square;
% --- Plot angular distribution ---
nexttile
polarhistogram(all_angles, nbins, 'Normalization', 'probability');
title(sprintf('Bond angle distribution (circ. variance = %.3f)', circ_variance));
% --- Plot g(r) ---
nexttile
plot(r_centers, g_r, 'LineWidth', 2);
xlabel('r (pixels)');
ylabel('g(r)');
title('Radial Pair Correlation Function g(r)');
grid on;
axis square
end