179 lines
5.3 KiB
Matlab
179 lines
5.3 KiB
Matlab
function [psi_global, order_ratio, Npoints] = computeBondOrderParameters(I)
|
|
% Analyze bond-orientational order in a 2D image, restricted to a circular region
|
|
%
|
|
% Input:
|
|
% I - 2D grayscale image (double or uint8)
|
|
%
|
|
% Outputs:
|
|
% psi_global - struct with fields psi2, psi4, psi6 (⟨|ψₙ|⟩ values)
|
|
% order_ratio - scalar = ⟨|ψ₆|⟩ / ⟨|ψ₂|⟩
|
|
% Npoints - number of detected points used
|
|
|
|
%% Step 1: Create mask
|
|
[Ny, Nx] = size(I);
|
|
% Parameters for elliptical mask
|
|
a = Nx / 2.25; % Semi-major axis (x-direction)
|
|
b = Ny / 2.25; % Semi-minor axis (y-direction)
|
|
theta_deg = 0; % Rotation angle in degrees
|
|
theta = deg2rad(theta_deg); % Convert to radians
|
|
|
|
% Meshgrid coordinates
|
|
[Ny, Nx] = size(I);
|
|
[X, Y] = meshgrid(1:Nx, 1:Ny);
|
|
cx = Nx / 2;
|
|
cy = Ny / 2;
|
|
|
|
% Shifted coordinates
|
|
Xc = X - cx;
|
|
Yc = Y - cy;
|
|
|
|
% Rotate coordinates
|
|
Xr = cos(theta) * Xc + sin(theta) * Yc;
|
|
Yr = -sin(theta) * Xc + cos(theta) * Yc;
|
|
|
|
% Elliptical mask equation
|
|
mask = (Xr / a).^2 + (Yr / b).^2 <= 1;
|
|
|
|
% Apply mask to image
|
|
I = double(I) .* mask;
|
|
|
|
%% Step 2: Detect local maxima within mask
|
|
I_smooth = imgaussfilt(I, 2);
|
|
peaks = imregionalmax(I_smooth);
|
|
[y, x] = find(peaks);
|
|
Npoints = length(x);
|
|
|
|
if Npoints < 6
|
|
warning('Too few points (%d) to compute bond order meaningfully.', Npoints);
|
|
psi_global = struct('psi2', NaN, 'psi4', NaN, 'psi6', NaN);
|
|
order_ratio = NaN;
|
|
return;
|
|
end
|
|
|
|
%% Step 3: Try Delaunay triangulation
|
|
use_kNN = false;
|
|
try
|
|
tri = delaunay(x, y);
|
|
catch
|
|
warning('Delaunay triangulation failed - falling back to kNN neighbor search');
|
|
use_kNN = true;
|
|
end
|
|
|
|
% 3) Find neighbors
|
|
neighbors = cell(Npoints, 1);
|
|
if ~use_kNN
|
|
% Use Delaunay neighbors
|
|
for i = 1:size(tri,1)
|
|
for j = 1:3
|
|
idx = tri(i,j);
|
|
nbrs = tri(i,[1 2 3] ~= j);
|
|
neighbors{idx} = unique([neighbors{idx}, nbrs]);
|
|
end
|
|
end
|
|
else
|
|
% Use kNN neighbors (e.g. k=6)
|
|
k = min(6, Npoints-1);
|
|
pts = [x, y];
|
|
[idx, ~] = knnsearch(pts, pts, 'K', k+1); % +1 for self
|
|
for j = 1:Npoints
|
|
neighbors{j} = idx(j, 2:end);
|
|
end
|
|
end
|
|
|
|
% 4) Compute bond order parameters
|
|
psi2 = zeros(Npoints,1);
|
|
psi4 = zeros(Npoints,1);
|
|
psi6 = zeros(Npoints,1);
|
|
|
|
for j = 1:Npoints
|
|
nbrs = neighbors{j};
|
|
nbrs(nbrs == j) = [];
|
|
if isempty(nbrs)
|
|
continue;
|
|
end
|
|
angles = atan2(y(nbrs) - y(j), x(nbrs) - x(j));
|
|
psi2(j) = abs(mean(exp(1i * 2 * angles)));
|
|
psi4(j) = abs(mean(exp(1i * 4 * angles)));
|
|
psi6(j) = abs(mean(exp(1i * 6 * angles)));
|
|
end
|
|
|
|
psi_global.psi2 = mean(psi2);
|
|
psi_global.psi4 = mean(psi4);
|
|
psi_global.psi6 = mean(psi6);
|
|
|
|
order_ratio = psi_global.psi6 / psi_global.psi2;
|
|
|
|
% --- After neighbors are found and (x,y) extracted ---
|
|
|
|
% 1) Angular distribution of all bonds pooled from all points
|
|
all_angles = [];
|
|
for j = 1:Npoints
|
|
nbrs = neighbors{j};
|
|
nbrs(nbrs == j) = [];
|
|
if isempty(nbrs), continue; end
|
|
angles = atan2(y(nbrs)-y(j), x(nbrs)-x(j));
|
|
all_angles = [all_angles; angles(:)];
|
|
end
|
|
|
|
% Histogram of bond angles over [-pi, pi]
|
|
nbins = 36; % 10 degree bins
|
|
edges = linspace(-pi, pi, nbins+1);
|
|
counts = histcounts(all_angles, edges, 'Normalization','probability');
|
|
|
|
% Circular variance of bond angles
|
|
R = abs(mean(exp(1i*all_angles)));
|
|
circ_variance = 1 - R; % 0 means angles clustered; 1 means uniform
|
|
|
|
% 2) Positional correlation function g(r) estimate
|
|
|
|
% Compute pairwise distances
|
|
coords = [x y];
|
|
D = pdist(coords);
|
|
max_r = min([Nx, Ny])/2; % max radius for g(r)
|
|
|
|
% Compute histogram of distances
|
|
dr = 1; % bin width in pixels (adjust)
|
|
r_edges = 0:dr:max_r;
|
|
[counts_r, r_bins] = histcounts(D, r_edges);
|
|
|
|
% Normalize g(r) by ideal gas distribution (circle annulus area)
|
|
r_centers = r_edges(1:end-1) + dr/2;
|
|
area_annulus = pi*((r_edges(2:end)).^2 - (r_edges(1:end-1)).^2);
|
|
density = Npoints / (Nx*Ny);
|
|
|
|
g_r = counts_r ./ (density * area_annulus * Npoints);
|
|
|
|
figure(1);
|
|
clf
|
|
set(gcf,'Position',[500 100 1250 500])
|
|
t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact'); % 1x4 grid
|
|
|
|
nexttile
|
|
imshow(I, []);
|
|
hold on;
|
|
scatter(x, y, 30, 'w', 'filled');
|
|
hold off;
|
|
colormap(Helper.Colormaps.plasma()); % Example colormap for original image plot
|
|
cbar1 = colorbar;
|
|
cbar1.Label.Interpreter = 'latex';
|
|
xlabel('$x$ ($\mu$m)', 'Interpreter', 'latex', 'FontSize', 14);
|
|
ylabel('$y$ ($\mu$m)', 'Interpreter', 'latex', 'FontSize', 14);
|
|
title('$|\Psi(x,y)|^2$', 'Interpreter', 'latex', 'FontSize', 14);
|
|
axis square;
|
|
|
|
% --- Plot angular distribution ---
|
|
nexttile
|
|
polarhistogram(all_angles, nbins, 'Normalization', 'probability');
|
|
title(sprintf('Bond angle distribution (circ. variance = %.3f)', circ_variance));
|
|
|
|
% --- Plot g(r) ---
|
|
nexttile
|
|
plot(r_centers, g_r, 'LineWidth', 2);
|
|
xlabel('r (pixels)');
|
|
ylabel('g(r)');
|
|
title('Radial Pair Correlation Function g(r)');
|
|
grid on;
|
|
axis square
|
|
|
|
|
|
end |