469 lines
16 KiB
Matlab
469 lines
16 KiB
Matlab
%% Parameters
|
|
|
|
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"];
|
|
|
|
folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/IRF/0044/";
|
|
|
|
cam = 5;
|
|
|
|
angle = 90 + 51.5;
|
|
center = [1700, 2300];
|
|
span = [255, 255];
|
|
fraction = [0.1, 0.1];
|
|
|
|
NA = 0.6;
|
|
pixel_size = 4.6e-6;
|
|
lambda = 421e-9;
|
|
|
|
d = lambda/2/pi/NA;
|
|
k_cutoff = NA/lambda/1e6;
|
|
|
|
%% Compute OD image, rotate and extract ROI for analysis
|
|
% Get a list of all files in the folder with the desired file name pattern.
|
|
filePattern = fullfile(folderPath, '*.h5');
|
|
files = dir(filePattern);
|
|
refimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
|
absimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
|
|
|
|
|
for k = 1 : length(files)
|
|
baseFileName = files(k).name;
|
|
fullFileName = fullfile(files(k).folder, baseFileName);
|
|
|
|
fprintf(1, 'Now reading %s\n', fullFileName);
|
|
|
|
atm_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle));
|
|
bkg_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
|
|
dark_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
|
|
|
|
refimages(:,:,k) = subtract_offset(crop_image(bkg_img, center, span), fraction);
|
|
absimages(:,:,k) = subtract_offset(crop_image(calculate_OD(atm_img, bkg_img, dark_img), center, span), fraction);
|
|
|
|
end
|
|
%% Fringe removal
|
|
|
|
optrefimages = fringeremoval(absimages, refimages);
|
|
absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :);
|
|
|
|
nimgs = size(absimages_fringe_removed,3);
|
|
od_imgs = cell(1, nimgs);
|
|
for i = 1:nimgs
|
|
od_imgs{i} = absimages_fringe_removed(:, :, i);
|
|
end
|
|
|
|
%% Compute the Density Noise Spectrum
|
|
|
|
mean_subtracted_od_imgs = cell(1, length(od_imgs));
|
|
mean_od_img = mean(cat(3, od_imgs{:}), 3, 'double');
|
|
|
|
density_fft = cell(1, length(od_imgs));
|
|
density_noise_spectrum = cell(1, length(od_imgs));
|
|
|
|
[Nx, Ny] = size(mean_od_img);
|
|
dx = pixel_size;
|
|
dy = pixel_size;
|
|
|
|
xvals = (1:Nx)*dx*1e6;
|
|
yvals = (1:Ny)*dy*1e6;
|
|
|
|
Nyq_k = 1/dx; % Nyquist
|
|
dk = 1/(Nx*dx); % Wavenumber increment
|
|
kx = -Nyq_k/2:dk:Nyq_k/2-dk; % wavenumber
|
|
kx = kx * dx; % wavenumber (in units of 1/dx)
|
|
|
|
Nyq_k = 1/dy; % Nyquist
|
|
dk = 1/(Ny*dy); % Wavenumber increment
|
|
ky = -Nyq_k/2:dk:Nyq_k/2-dk; % wavenumber
|
|
ky = ky * dy; % wavenumber (in units of 1/dy)
|
|
|
|
% Create Circular Mask
|
|
n = 2^8; % size of mask
|
|
mask = zeros(n);
|
|
I = 1:n;
|
|
x = I-n/2; % mask x-coordinates
|
|
y = n/2-I; % mask y-coordinates
|
|
[X,Y] = meshgrid(x,y); % create 2-D mask grid
|
|
R = 32; % aperture radius
|
|
A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
|
|
mask(A) = 1; % set mask elements inside aperture to 1
|
|
|
|
|
|
% Calculate Power Spectrum and plot
|
|
figure('Position', [100, 100, 1200, 800]);
|
|
clf
|
|
|
|
for k = 1 : length(od_imgs)
|
|
mean_subtracted_od_imgs{k} = od_imgs{k} - mean_od_img;
|
|
masked_img = mean_subtracted_od_imgs{k} .* mask;
|
|
density_fft{k} = (1/numel(masked_img)) * abs(fftshift(fft2(masked_img)));
|
|
density_noise_spectrum{k} = density_fft{k}.^2;
|
|
|
|
% Subplot 1
|
|
% subplot(2, 3, 1);
|
|
subplot('Position', [0.05, 0.55, 0.28, 0.4])
|
|
imagesc(xvals, yvals, od_imgs{k})
|
|
xlabel('µm', 'FontSize', 16)
|
|
ylabel('µm', 'FontSize', 16)
|
|
axis equal tight;
|
|
colorbar
|
|
colormap (flip(jet));
|
|
% set(gca,'CLim',[0 100]);
|
|
set(gca,'YDir','normal')
|
|
title('Single-shot image', 'FontSize', 16);
|
|
|
|
% Subplot 2
|
|
% subplot(2, 3, 2);
|
|
subplot('Position', [0.36, 0.55, 0.28, 0.4])
|
|
imagesc(xvals, yvals, mean_od_img)
|
|
xlabel('µm', 'FontSize', 16)
|
|
ylabel('µm', 'FontSize', 16)
|
|
axis equal tight;
|
|
colorbar
|
|
colormap (flip(jet));
|
|
% set(gca,'CLim',[0 100]);
|
|
set(gca,'YDir','normal')
|
|
title('Averaged density image', 'FontSize', 16);
|
|
|
|
% Subplot 3
|
|
% subplot(2, 3, 3);
|
|
subplot('Position', [0.67, 0.55, 0.28, 0.4]);
|
|
imagesc(xvals, yvals, mean_subtracted_od_imgs{k})
|
|
xlabel('µm', 'FontSize', 16)
|
|
ylabel('µm', 'FontSize', 16)
|
|
axis equal tight;
|
|
colorbar
|
|
colormap (flip(jet));
|
|
% set(gca,'CLim',[0 100]);
|
|
set(gca,'YDir','normal')
|
|
title('Image noise = Single-shot - Average', 'FontSize', 16);
|
|
|
|
% Subplot 4
|
|
% subplot(2, 3, 4);
|
|
subplot('Position', [0.05, 0.05, 0.28, 0.4]);
|
|
imagesc(xvals, yvals, mean_subtracted_od_imgs{k} .* mask)
|
|
xlabel('µm', 'FontSize', 16)
|
|
ylabel('µm', 'FontSize', 16)
|
|
axis equal tight;
|
|
colorbar
|
|
colormap (flip(jet));
|
|
% set(gca,'CLim',[0 100]);
|
|
set(gca,'YDir','normal')
|
|
title('Masked Noise', 'FontSize', 16);
|
|
|
|
% Subplot 5
|
|
% subplot(2, 3, 5);
|
|
subplot('Position', [0.36, 0.05, 0.28, 0.4]);
|
|
imagesc(kx, ky, abs(log2(density_fft{k})))
|
|
xlabel('1/dx', 'FontSize', 16)
|
|
ylabel('1/dy', 'FontSize', 16)
|
|
axis equal tight;
|
|
colorbar
|
|
colormap (flip(jet));
|
|
% set(gca,'CLim',[0 100]);
|
|
set(gca,'YDir','normal')
|
|
title('DFT', 'FontSize', 16);
|
|
|
|
% Subplot 6
|
|
% subplot(2, 3, 6);
|
|
subplot('Position', [0.67, 0.05, 0.28, 0.4]);
|
|
imagesc(kx, ky, abs(log2(density_noise_spectrum{k})))
|
|
xlabel('1/dx', 'FontSize', 16)
|
|
ylabel('1/dy', 'FontSize', 16)
|
|
axis equal tight;
|
|
colorbar
|
|
colormap (flip(jet));
|
|
% set(gca,'CLim',[0 100]);
|
|
set(gca,'YDir','normal')
|
|
title('Density Noise Spectrum = |DFT|^2', 'FontSize', 16);
|
|
|
|
drawnow;
|
|
end
|
|
|
|
%% Compute the average 2D spectrum and do radial averaging to get the 1D spectrum
|
|
|
|
% Compute the average power spectrum.
|
|
averagePowerSpectrum = mean(cat(3, density_noise_spectrum{:}), 3, 'double');
|
|
|
|
% Plot the average power spectrum.
|
|
figure('Position', [100, 100, 1200, 500]);
|
|
clf
|
|
|
|
subplot('Position', [0.05, 0.1, 0.4, 0.8]) % Adjusted position
|
|
imagesc(abs(10*log10(averagePowerSpectrum)))
|
|
axis equal tight;
|
|
colorbar
|
|
colormap(flip(jet));
|
|
% set(gca,'CLim',[0 1e-7]);
|
|
title('Average Density Noise Spectrum', 'FontSize', 16);
|
|
grid on;
|
|
centers = ginput;
|
|
radius = 6;
|
|
% Plot where clicked.
|
|
hVC = viscircles(centers, radius, 'Color', 'r', 'LineWidth', 2);
|
|
xc = centers(:,1);
|
|
% xc = [78.2600, 108.3400, 128.8200, 150.5800, 181.3000];
|
|
yc = centers(:,2);
|
|
% yc = [131.3800, 155.7000, 128.8200, 101.3000, 126.2600];
|
|
[yDim, xDim] = size(averagePowerSpectrum);
|
|
[xx,yy] = meshgrid(1:yDim,1:xDim);
|
|
mask = false(xDim,yDim);
|
|
for ii = 1:length(centers)
|
|
mask = mask | hypot(xx - xc(ii), yy - yc(ii)) <= radius;
|
|
end
|
|
mask = not(mask);
|
|
|
|
x1 = 1;
|
|
y1 = 1;
|
|
x2 = 256;
|
|
y2 = 256;
|
|
|
|
% Ask user if the circle is acceptable.
|
|
message = sprintf('Is this acceptable?');
|
|
button = questdlg(message, message, 'Accept', 'Reject and Quit', 'Accept');
|
|
if contains(button, 'Accept','IgnoreCase',true)
|
|
image = mask.*averagePowerSpectrum;
|
|
image(image==0) = NaN;
|
|
imagesc(kx, ky, mask.*abs(10*log10(averagePowerSpectrum)))
|
|
hold on
|
|
line([kx(x1),kx(x2)], [ky(y1),ky(y2)], 'Color','white', 'LineStyle','--', 'LineWidth', 4);
|
|
% imagesc(kx, ky, 10*log10(averagePowerSpectrum))
|
|
% imagesc(kx, ky, log2(averagePowerSpectrum))
|
|
% imagesc(kx, ky, averagePowerSpectrum)
|
|
xlabel('1/dx', 'FontSize', 16)
|
|
ylabel('1/dy', 'FontSize', 16)
|
|
axis equal tight;
|
|
colorbar
|
|
colormap(flip(jet));
|
|
% set(gca,'CLim',[0 1e-7]);
|
|
title('Average Density Noise Spectrum', 'FontSize', 16);
|
|
grid on;
|
|
elseif contains(button, 'Quit','IgnoreCase',true)
|
|
delete(hVC); % Delete the circle from the overlay.
|
|
image = averagePowerSpectrum;
|
|
imagesc(kx, ky, abs(10*log10(averagePowerSpectrum)))
|
|
% imagesc(kx, ky, 10*log10(averagePowerSpectrum))
|
|
% imagesc(kx, ky, log2(averagePowerSpectrum))
|
|
% imagesc(kx, ky, averagePowerSpectrum)
|
|
xlabel('1/dx', 'FontSize', 16)
|
|
ylabel('1/dy', 'FontSize', 16)
|
|
axis equal tight;
|
|
colorbar
|
|
colormap(flip(jet));
|
|
% set(gca,'CLim',[0 1e-7]);
|
|
title('Average Density Noise Spectrum', 'FontSize', 16);
|
|
grid on;
|
|
end
|
|
|
|
subplot('Position', [0.55, 0.1, 0.4, 0.8]) % Adjusted position
|
|
% [r, Zr] = radial_profile(averagePowerSpectrum, 1);
|
|
% Zr = (Zr - min(Zr))./(max(Zr) - min(Zr));
|
|
% plot(r, Zr, 'o-', 'MarkerSize', 4, 'MarkerFaceColor', 'none');
|
|
% set(gca, 'XScale', 'log'); % Setting x-axis to log scale
|
|
|
|
[xi, yi, profile] = improfile(image, [x1,x2], [y1,y2]);
|
|
profile = (profile - min(profile))./(max(profile) - min(profile));
|
|
ks = sqrt(kx.^2 + ky.^2);
|
|
|
|
profile = profile(length(profile)/2:end);
|
|
ks = ks(length(ks)/2:end);
|
|
|
|
n = 0.15;
|
|
[val,slice_idx]=min(abs(ks-n));
|
|
ks = ks(1:slice_idx);
|
|
profile = profile(1:slice_idx);
|
|
plot(ks, profile, 'b*-');
|
|
% plot(profile, 'b*-');
|
|
grid on;
|
|
% xlim([min(ks) max(ks)])
|
|
title('Radial average of Density Noise Spectrum', 'FontSize', 16);
|
|
grid on;
|
|
|
|
|
|
%% Helper Functions
|
|
|
|
function ret = get_offset_from_corner(img, x_fraction, y_fraction)
|
|
% image must be a 2D numerical array
|
|
[dim1, dim2] = size(img);
|
|
|
|
s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction));
|
|
s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2);
|
|
s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction));
|
|
s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2);
|
|
|
|
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
|
|
end
|
|
|
|
function ret = subtract_offset(img, fraction)
|
|
% Remove the background from the image.
|
|
% :param dataArray: The image
|
|
% :type dataArray: xarray DataArray
|
|
% :param x_fraction: The fraction of the pixels used in x axis
|
|
% :type x_fraction: float
|
|
% :param y_fraction: The fraction of the pixels used in y axis
|
|
% :type y_fraction: float
|
|
% :return: The image after removing background
|
|
% :rtype: xarray DataArray
|
|
|
|
x_fraction = fraction(1);
|
|
y_fraction = fraction(2);
|
|
offset = get_offset_from_corner(img, x_fraction, y_fraction);
|
|
ret = img - offset;
|
|
end
|
|
|
|
function ret = crop_image(img, center, span)
|
|
% Crop the image according to the region of interest (ROI).
|
|
% :param dataSet: The images
|
|
% :type dataSet: xarray DataArray or DataSet
|
|
% :param center: The center of region of interest (ROI)
|
|
% :type center: tuple
|
|
% :param span: The span of region of interest (ROI)
|
|
% :type span: tuple
|
|
% :return: The cropped images
|
|
% :rtype: xarray DataArray or DataSet
|
|
|
|
x_start = floor(center(1) - span(1) / 2);
|
|
x_end = floor(center(1) + span(1) / 2);
|
|
y_start = floor(center(2) - span(2) / 2);
|
|
y_end = floor(center(2) + span(2) / 2);
|
|
|
|
ret = img(y_start:y_end, x_start:x_end);
|
|
end
|
|
|
|
function ret = calculate_OD(imageAtom, imageBackground, imageDark)
|
|
% Calculate the OD image for absorption imaging.
|
|
% :param imageAtom: The image with atoms
|
|
% :type imageAtom: numpy array
|
|
% :param imageBackground: The image without atoms
|
|
% :type imageBackground: numpy array
|
|
% :param imageDark: The image without light
|
|
% :type imageDark: numpy array
|
|
% :return: The OD images
|
|
% :rtype: numpy array
|
|
|
|
numerator = imageBackground - imageDark;
|
|
denominator = imageAtom - imageDark;
|
|
|
|
numerator(numerator == 0) = 1;
|
|
denominator(denominator == 0) = 1;
|
|
|
|
ret = -log(double(abs(denominator ./ numerator)));
|
|
|
|
if numel(ret) == 1
|
|
ret = ret(1);
|
|
end
|
|
end
|
|
|
|
function [R, Zr] = radial_profile(data,radial_step)
|
|
x = (1:size(data,2))-size(data,2)/2;
|
|
y = (1:size(data,1))-size(data,1)/2;
|
|
% coordinate grid:
|
|
[X,Y] = meshgrid(x,y);
|
|
% creating circular layers
|
|
Z_integer = round(abs(X+1i*Y)/radial_step)+1;
|
|
% very fast MatLab calculations:
|
|
R = accumarray(Z_integer(:),abs(X(:)+1i*Y(:)),[],@mean);
|
|
Zr = accumarray(Z_integer(:),data(:),[],@mean);
|
|
end
|
|
|
|
function [M] = ImagingResponseFunction(B)
|
|
x = -100:100;
|
|
y = x;
|
|
[X,Y] = meshgrid(x,y);
|
|
R = sqrt(X.^2+Y.^2);
|
|
PHI = atan2(X,Y)+pi;
|
|
%fit parameters
|
|
tau = B(1);
|
|
alpha = B(2);
|
|
S0 = B(3);
|
|
phi = B(4);
|
|
beta = B(5);
|
|
delta = B(6);
|
|
A = B(7);
|
|
C = B(8);
|
|
a = B(9);
|
|
U = heaviside(1-R/a).*exp(-R.^2/a^2/tau^2);
|
|
THETA = S0*(R/a).^4 + alpha*(R/a).^2.*cos(2*PHI-2*phi) + beta*(R/a).^2;
|
|
p = U.*exp(1i.*THETA);
|
|
M = A*abs((ifft2(real(exp(1i*delta).*fftshift(fft2(p)))))).^2 + C;
|
|
end
|
|
|
|
function [RadialResponseFunc] = RadialImagingResponseFunction(C, k, kmax)
|
|
A = heaviside(1-k/kmax).*exp(-C(1)*k.^4);
|
|
W = C(2) + C(3)*k.^2 + C(4)*k.^4;
|
|
RadialResponseFunc = 0;
|
|
for n = -30:30
|
|
RadialResponseFunc = RadialResponseFunc + besselj(n,C(5)*k.^2).^2 + besselj(n,C(5)*k.^2).*besselj(-n,C(5)*k.^2).*cos(2*W);
|
|
end
|
|
RadialResponseFunc = C(6)*1/2*A.*RadialResponseFunc;
|
|
end
|
|
|
|
function [optrefimages] = fringeremoval(absimages, refimages, bgmask)
|
|
% FRINGEREMOVAL - Fringe removal and noise reduction from absorption images.
|
|
% Creates an optimal reference image for each absorption image in a set as
|
|
% a linear combination of reference images, with coefficients chosen to
|
|
% minimize the least-squares residuals between each absorption image and
|
|
% the optimal reference image. The coefficients are obtained by solving a
|
|
% linear set of equations using matrix inverse by LU decomposition.
|
|
%
|
|
% Application of the algorithm is described in C. F. Ockeloen et al, Improved
|
|
% detection of small atom numbers through image processing, arXiv:1007.2136 (2010).
|
|
%
|
|
% Syntax:
|
|
% [optrefimages] = fringeremoval(absimages,refimages,bgmask);
|
|
%
|
|
% Required inputs:
|
|
% absimages - Absorption image data,
|
|
% typically 16 bit grayscale images
|
|
% refimages - Raw reference image data
|
|
% absimages and refimages are both cell arrays containing
|
|
% 2D array data. The number of refimages can differ from the
|
|
% number of absimages.
|
|
%
|
|
% Optional inputs:
|
|
% bgmask - Array specifying background region used,
|
|
% 1=background, 0=data. Defaults to all ones.
|
|
% Outputs:
|
|
% optrefimages - Cell array of optimal reference images,
|
|
% equal in size to absimages.
|
|
%
|
|
|
|
% Dependencies: none
|
|
%
|
|
% Authors: Shannon Whitlock, Caspar Ockeloen
|
|
% Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and
|
|
% S. Whitlock, Improved detection of small atom numbers through
|
|
% image processing, arXiv:1007.2136
|
|
% Email:
|
|
% May 2009; Last revision: 11 August 2010
|
|
|
|
% Process inputs
|
|
|
|
% Set variables, and flatten absorption and reference images
|
|
nimgs = size(absimages,3);
|
|
nimgsR = size(refimages,3);
|
|
xdim = size(absimages(:,:,1),2);
|
|
ydim = size(absimages(:,:,1),1);
|
|
|
|
R = single(reshape(refimages,xdim*ydim,nimgsR));
|
|
A = single(reshape(absimages,xdim*ydim,nimgs));
|
|
optrefimages=zeros(size(absimages)); % preallocate
|
|
|
|
if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end
|
|
k = find(bgmask(:)==1); % Index k specifying background region
|
|
|
|
% Ensure there are no duplicate reference images
|
|
% R=unique(R','rows')'; % comment this line if you run out of memory
|
|
|
|
% Decompose B = R*R' using singular value or LU decomposition
|
|
[L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition
|
|
|
|
for j=1:nimgs
|
|
b=R(k,:)'*A(k,j);
|
|
% Obtain coefficients c which minimise least-square residuals
|
|
lower.LT = true; upper.UT = true;
|
|
c = linsolve(U,linsolve(L,b(p,:),lower),upper);
|
|
|
|
% Compute optimised reference image
|
|
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
|
|
end
|
|
end |