Calculations/Data-Analyzer/+Plotter/plotPCAResults.m

190 lines
7.5 KiB
Matlab

function plotPCAResults(pcaResults, scan_parameter_values, scan_reference_values, varargin)
%% plotPCAResults: Plots PCA results in a style consistent with plotG2
%
% Inputs:
% pcaResults - struct returned by computePCAfromImages
% scan_parameter_values, scan_reference_values
% varargin - name-value pairs (same as plotG2 plus 'FigNumRange')
% --- Parse name-value pairs ---
p = inputParser;
addParameter(p, 'FontName', 'Arial', @ischar);
addParameter(p, 'FontSize', 14, @isnumeric);
addParameter(p, 'Colormap', @Colormaps.coolwarm);
addParameter(p, 'SkipSaveFigures', false, @islogical);
addParameter(p, 'SaveDirectory', pwd, @ischar);
addParameter(p, 'FigNumRange', [], @(x) isnumeric(x) && all(x>0));
parse(p, varargin{:});
opts = p.Results;
Nx = pcaResults.Nx;
Ny = pcaResults.Ny;
coeff = pcaResults.coeff;
score = pcaResults.score;
explained = pcaResults.explained;
raw_scan_param_vals = scan_parameter_values;
unique_scan_param_vals = scan_reference_values;
numGroups = numel(unique_scan_param_vals);
colors = lines(numGroups);
% --- Figure numbering setup ---
if isempty(opts.FigNumRange)
figCount = 1;
figNums = [];
else
figNums = opts.FigNumRange;
figCount = 1;
end
figPos = [100 100 950 750];
%% --- Figure 1: PC1 Image ---
pc1_image = reshape(coeff(:,1), Nx, Ny);
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos);
imagesc(pc1_image); axis image off; colormap(opts.Colormap()); colorbar;
title(sprintf('First Principal Component (PC1) Image - Explains %.2f%% Variance', explained(1)), ...
'FontName', opts.FontName, 'FontSize', opts.FontSize + 2);
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', 'PC1_Image.fig', 'SaveDirectory', opts.SaveDirectory);
end
figCount = figCount + 1;
%% --- Figure 2: PC1 Scores Distribution Scatterplot ---
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos); hold on;
for g = 1:numGroups
idx = raw_scan_param_vals == unique_scan_param_vals(g);
scatter(repmat(unique_scan_param_vals(g), sum(idx),1), score(idx,1), 36, colors(g,:), 'filled');
end
xlabel('Control Parameter', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
ylabel('PC1 Score', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
title('Evolution of PC1 Scores', 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2);
grid on;
set(gca,'XDir','reverse'); % Ensure decreasing scan_reference_values go left-to-right
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', 'PC1_Scatter.fig', 'SaveDirectory', opts.SaveDirectory);
end
figCount = figCount + 1;
%% --- Figure 3: PC1 Scores Distribution Histograms ---
numTiles = min(6, numGroups); % show up to 6 groups
tileIndices = round(linspace(1, numGroups, numTiles));
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos);
tLayout = tiledlayout(3,2,'TileSpacing','compact','Padding','compact');
for t = 1:numTiles
g = tileIndices(t);
idx = raw_scan_param_vals == unique_scan_param_vals(g);
data = score(idx,1);
nexttile;
histogram(data, 'Normalization', 'pdf', 'FaceColor', colors(g,:), 'FaceAlpha', 0.3);
hold on;
[f, xi] = ksdensity(data);
plot(xi, f, 'Color', colors(g,:), 'LineWidth', 2);
yl = ylim;
plot([median(data) median(data)], yl, 'k--', 'LineWidth', 1);
xlabel('PC1 Score');
ylabel('Probability');
title(sprintf('Control = %g', unique_scan_param_vals(g)));
grid on;
end
sgtitle('PC1 Score Distributions');
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', 'PC1_Distributions.fig', 'SaveDirectory', opts.SaveDirectory);
end
figCount = figCount + 1;
%% --- Figure 4: PC1 Scores Distribution Boxplot ---
% Construct group labels explicitly
groupLabels = arrayfun(@num2str, raw_scan_param_vals, 'UniformOutput', false);
% Create categorical variable with specified order
groupCats = categorical(groupLabels, ...
arrayfun(@num2str, unique_scan_param_vals, 'UniformOutput', false), ...
'Ordinal', true);
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos);
% Plot boxplot with categorical groups
boxplot(score(:,1), groupCats);
xlabel('Control Parameter', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
ylabel('PC1 Score', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
title('PC1 Score Boxplots by Group', 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2);
grid on;
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', 'PC1_Boxplot.fig', 'SaveDirectory', opts.SaveDirectory);
end
figCount = figCount + 1;
%% --- Figure 5: PC1 Scores Distribution Mean ± SEM ---
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos);
meanScores = arrayfun(@(g) mean(score(raw_scan_param_vals == g,1)), unique_scan_param_vals);
semScores = arrayfun(@(g) std(score(raw_scan_param_vals == g,1))/sqrt(sum(raw_scan_param_vals == g)), unique_scan_param_vals);
errorbar(unique_scan_param_vals, meanScores, semScores, '-o', 'LineWidth', 2);
xlabel('Control Parameter', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
ylabel('Mean PC1 Score ± SEM', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
title('Mean ± SEM of PC1 Scores', 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2);
grid on;
set(gca,'XDir','reverse'); % consistent ordering
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', 'PC1_MeanSEM.fig', 'SaveDirectory', opts.SaveDirectory);
end
figCount = figCount + 1;
%% --- Figure 6: PC1 Scores Distribution Binder Cumulant ---
cumulantsAll = cell2mat(arrayfun(@(g) {Calculator.computeCumulants(score(raw_scan_param_vals == g,1), 4)}, unique_scan_param_vals));
cumulantsAll = reshape(cumulantsAll, 4, numGroups);
binderVals = cumulantsAll(4,:);
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos);
plot(unique_scan_param_vals, binderVals*1E-5, '-o', 'LineWidth', 2); % scale like older code
xlabel('Control Parameter', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
ylabel('\kappa (\times 10^5)', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
title('Binder Cumulant of PC1 Scores', 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2);
grid on;
set(gca,'XDir','reverse'); % consistent ordering
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', 'PC1_BinderCumulant.fig', 'SaveDirectory', opts.SaveDirectory);
end
%% --- ANOVA Test ---
p = anova1(score(:,1), groupLabels, 'off');
fprintf('[INFO] ANOVA p-value for PC1 score differences between groups: %.4e\n', p);
end