Calculations/Data-Analyzer/+Scripts/BECToDropletsToStripes/runSpectralDistributionAnalysis.m

405 lines
15 KiB
Matlab
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

%% ===== BEC-Droplets-Stripes Settings =====
% Specify data location to run analysis on
dataSources = {
struct('sequence', 'TwoDGas', ...
'date', '2025/06/23', ...
'runs', [300]) % specify run numbers as a string in "" or just as a numeric value
};
options = struct();
% File paths
options.baseDataFolder = '//DyLabNAS/Data';
options.FullODImagesFolder = 'E:/Data - Experiment/FullODImages/202506';
options.measurementName = 'DropletsToStripes';
scriptFullPath = mfilename('fullpath');
options.saveDirectory = fileparts(scriptFullPath);
% Camera / imaging settings
options.cam = 4; % 1 - ODT_1_Axis_Camera; 2 - ODT_2_Axis_Camera; 3 - Horizontal_Axis_Camera;, 4 - Vertical_Axis_Camera;
options.angle = 0; % angle by which image will be rotated
options.center = [1410, 2030];
options.span = [200, 200];
options.fraction = [0.1, 0.1];
options.pixel_size = 5.86e-6; % in meters
options.magnification = 23.94;
options.ImagingMode = 'HighIntensity';
options.PulseDuration = 5e-6; % in s
% Fourier analysis settings
options.theta_min = deg2rad(0);
options.theta_max = deg2rad(180);
options.N_radial_bins = 500;
options.Radial_Sigma = 2;
options.Radial_WindowSize = 5; % odd number
options.k_min = 1.2771; % μm⁻¹
options.k_max = 2.5541; % μm⁻¹
options.N_angular_bins = 360;
options.Angular_Threshold = 75;
options.Angular_Sigma = 2;
options.Angular_WindowSize = 5;
options.zoom_size = 50;
%
options.maximumShift = 8;
options.Radial_Theta = deg2rad(45);
options.Radial_Minimum = 2;
options.Radial_Maximum = 6;
options.skipLivePlot = false;
% Flags
options.skipUnshuffling = false;
options.skipNormalization = false;
options.skipFringeRemoval = true;
options.skipPreprocessing = true;
options.skipMasking = true;
options.skipIntensityThresholding = true;
options.skipBinarization = true;
options.skipFullODImagesFolderUse = false;
options.skipSaveData = false;
options.skipSaveFigures = true;
options.skipSaveProcessedOD = true;
options.skipLivePlot = false;
options.showProgressBar = true;
% Extras
options.font = 'Bahnschrift';
switch options.measurementName
case 'BECToDroplets'
options.scan_parameter = 'rot_mag_field';
options.flipSortOrder = true;
options.scanParameterUnits = 'gauss';
options.titleString = 'BEC to Droplets';
case 'BECToStripes'
options.scan_parameter = 'rot_mag_field';
options.flipSortOrder = true;
options.scanParameterUnits = 'gauss';
options.titleString = 'BEC to Stripes';
case 'DropletsToStripes'
options.scan_parameter = 'ps_rot_mag_fin_pol_angle';
options.flipSortOrder = false;
options.scanParameterUnits = 'degrees';
options.titleString = 'Droplets to Stripes';
case 'StripesToDroplets'
options.scan_parameter = 'ps_rot_mag_fin_pol_angle';
options.flipSortOrder = false;
options.scanParameterUnits = 'degrees';
options.titleString = 'Stripes to Droplets';
end
%% ===== Collect Images and Launch Viewer =====
[options.selectedPath, options.folderPath] = Helper.selectDataSourcePath(dataSources, options);
[od_imgs, scan_parameter_values, scan_reference_values, file_list] = Helper.collectODImages(options);
%% Conduct spectral analysis
spectral_analysis_results = Analyzer.extractFullAngularSpectralDistribution(od_imgs, options);
%% ------------------ 1. Plot of all Angular Spectral Distribution Curves ------------------
Plotter.plotSpectralCurves( ...
spectral_analysis_results.S_theta_norm_all, ...
spectral_analysis_results.theta_vals/pi, ... % correct θ values
scan_reference_values, ... % correct scan params
'Title', options.titleString, ...
'XLabel', '\theta / \pi', ...
'YLabel', 'S(\theta)', ...
'HighlightEvery', 10, ... % highlight every 10th repetition
'FontName', options.font, ...
'FigNum', 1, ...
'TileTitlePrefix', '\alpha', ... % user-defined tile prefix
'TileTitleSuffix', '^\circ', ... % user-defined suffix (e.g., degrees symbol)
'SkipSaveFigures', options.skipSaveFigures, ...
'SaveFileName', 'SpectralCurves.fig', ...
'SaveDirectory', options.saveDirectory);
%% ------------------ 2. Plot of all Angular Spectral Distribution Curves shifted ------------------
% --- Recenter curves first ---
results = Analyzer.recenterSpectralCurves(spectral_analysis_results.S_theta_norm_all, ...
spectral_analysis_results.theta_vals/pi, ...
scan_reference_values, ...
'SearchRange', [0 90]); % degrees
% --- Restrict to desired theta range (e.g., 0 to 0.5*pi) ---
thetaMin = 0; % in units of pi (since you divided by pi)
thetaMax = 1; % corresponds to pi/2
mask = results.x_values >= thetaMin & results.x_values <= thetaMax;
results.x_values = results.x_values(mask);
% Apply the same mask to each curve set
for i = 1:numel(results.curves)
results.curves{i} = results.curves{i}(:, mask);
results.curves_mean{i} = results.curves_mean{i}(mask);
results.curves_error{i}= results.curves_error{i}(mask);
end
Plotter.plotSpectralCurvesRecentered( ...
results, ...
scan_reference_values, ... % correct scan params
'Title', options.titleString, ...
'XLabel', '\theta / \pi', ...
'YLabel', 'S(\theta)', ...
'HighlightEvery', 10, ... % highlight every 10th repetition
'FontName', options.font, ...
'FigNum', 2, ...
'TileTitlePrefix', '\alpha', ... % user-defined tile prefix
'TileTitleSuffix', '^\circ', ... % user-defined suffix (e.g., degrees symbol)
'SkipSaveFigures', options.skipSaveFigures, ...
'SaveFileName', 'SpectralCurves.fig', ...
'SaveDirectory', options.saveDirectory);
%% ------------------ 3. Plot cumulants from shifted Angular Spectral Distribution Curves ------------------
Plotter.plotSpectralDistributionCumulants(results, ...
'Title', options.titleString, ...
'XLabel', '\alpha (degrees)', ...
'FontName', options.font, ...
'FontSize', 14, ...
'FigNum', 3, ...
'SkipSaveFigures', false, ...
'SaveFileName', 'SpectralCumulants.fig');
%% ------------------ 4. Fit shifted Angular Spectral Distribution Curves ------------------
[fitResults, rawCurves] = Analyzer.fitTwoGaussianCurves(...
spectral_analysis_results.S_theta_norm_all, ...
spectral_analysis_results.theta_vals, ...
'MaxTheta', pi/2, ...
'ResidualThreshold', 0.15, ...
'PositionThreshold', pi/15, ...
'AmplitudeThreshold', 0.15);
%{
% --- Function call ---
plotTwoGaussianFitsOnRaw(fitResults, rawCurves, 8, 12); % 8×12 subplots per page
% --- Function definition ---
function plotTwoGaussianFitsOnRaw(fitResults, rawCurves, nRows, nCols)
% plotTwoGaussianFitsOnRaw - Plots raw curves and overlays valid two-Gaussian fits.
%
% Inputs:
% fitResults - struct array from fitTwoGaussianCurves (may contain fits)
% rawCurves - struct array with fields:
% .x - raw curve
% .theta - corresponding theta values
% nRows - number of subplot rows per page (default: 4)
% nCols - number of subplot columns per page (default: 6)
if nargin < 3, nRows = 4; end
if nargin < 4, nCols = 6; end
Ncurves = numel(rawCurves);
plotsPerPage = nRows * nCols;
pageNum = 1;
for k = 1:Ncurves
% --- New figure/page if needed ---
if mod(k-1, plotsPerPage) == 0
figure('Name', sprintf('Curves Page %d', pageNum), ...
'NumberTitle', 'off', 'Color', 'w');
pageNum = pageNum + 1;
end
% --- Select subplot ---
subplot(nRows, nCols, mod(k-1, plotsPerPage)+1);
hold on; grid on; box on;
% --- Plot raw curve ---
xRaw = rawCurves(k).x;
thetaRaw = rawCurves(k).theta;
if ~isempty(xRaw) && ~isempty(thetaRaw) && all(isfinite(xRaw))
plot(thetaRaw, xRaw, 'k.-', 'LineWidth', 1, 'DisplayName', 'Raw data');
end
% --- Overlay fit if valid ---
if k <= numel(fitResults)
fit = fitResults(k);
if isfield(fit, 'isValid') && fit.isValid ...
&& ~isempty(fit.yFit) && ~isempty(fit.thetaFine)
plot(fit.thetaFine, fit.yFit, 'r-', 'LineWidth', 1.2, 'DisplayName', 'Two-Gaussian fit');
end
end
% --- Formatting ---
xlabel('\theta (rad)');
ylabel('Normalized amplitude');
title(sprintf('Curve %d', k), 'FontSize', 10);
% --- Legend once per page ---
if mod(k-1, plotsPerPage) == 0
legend('Location', 'best', 'FontSize', 8);
end
hold off;
end
end
%}
%% ------------------ 5. Plot fit parameters - amplitude ------------------
Plotter.plotFitParameterPDF(fitResults, scan_reference_values, 'A2', ...
'Title', options.titleString, ...
'XLabel', '\alpha (degrees)', ...
'YLabel', 'Secondary peak amplitude', ...
'FontName', options.font, ...
'FontSize', 16, ...
'FigNum', 4, ...
'SkipSaveFigures', options.skipSaveFigures, ...
'SaveFileName', 'SecondaryPeakAmplitudePDF.fig', ...
'PlotType', 'histogram', ...
'NumberOfBins', 20, ...
'NormalizeHistogram', true, ...
'Colormap', @Colormaps.coolwarm, ...
'XLim', [min(scan_reference_values), max(scan_reference_values)], ...
'YLim', [0, 1.6]);
%% ------------------ 6. Plot fit parameters - position ------------------
Plotter.plotFitParameterPDF(fitResults, scan_reference_values, 'mu2', ...
'Title', options.titleString, ...
'XLabel', '\alpha (degrees)', ...
'YLabel', 'Secondary peak position (\theta, rad)', ...
'FontName', options.font, ...
'FontSize', 16, ...
'FigNum', 5, ...
'SkipSaveFigures', options.skipSaveFigures, ...
'SaveFileName', 'SecondaryPeakPositionPDF.fig', ...
'PlotType', 'histogram', ...
'NumberOfBins', 20, ...
'NormalizeHistogram', true, ...
'Colormap', @Colormaps.coolwarm, ...
'XLim', [min(scan_reference_values), max(scan_reference_values)], ...
'YLim', [0, 1.6]);
%% ------------------ 7. Plot fit parameters - width ------------------
Plotter.plotFitParameterPDF(fitResults, scan_reference_values, 'sigma2', ...
'Title', options.titleString, ...
'XLabel', '\alpha (degrees)', ...
'YLabel', 'Secondary peak width (\sigma, rad)', ...
'FontName', options.font, ...
'FontSize', 16, ...
'FigNum', 6, ...
'SkipSaveFigures', options.skipSaveFigures, ...
'SaveFileName', 'SecondaryPeakWidthPDF.fig', ...
'PlotType', 'histogram', ...
'NumberOfBins', 20, ...
'NormalizeHistogram', true, ...
'Colormap', @Colormaps.coolwarm, ...
'XLim', [min(scan_reference_values), max(scan_reference_values)], ...
'YLim', [0, 1.6]);
%% ------------------ 8. Plot fit parameters of mean shifted Angular Spectral Distribution Curves ------------------
% --- Recenter curves first ---
results = Analyzer.recenterSpectralCurves(spectral_analysis_results.S_theta_norm_all, ...
spectral_analysis_results.theta_vals/pi, ...
scan_reference_values, ...
'SearchRange', [0 90]); % degrees
% --- Restrict to desired theta range (e.g., 0 to 0.5*pi) ---
thetaMin = 0; % in units of pi (since you divided by pi)
thetaMax = 1; % corresponds to pi/2
mask = results.x_values >= thetaMin & results.x_values <= thetaMax;
results.x_values = results.x_values(mask);
% Apply the same mask to each curve set
for i = 1:numel(results.curves)
results.curves_mean{i} = results.curves_mean{i}(mask);
end
% --- Fit two-Gaussian model to mean curves ---
[fitResultsMean, ~] = Analyzer.fitTwoGaussianCurves(...
results.curves_mean, ...
results.x_values*pi, ...
'MaxTheta', pi/2, ...
'ResidualThreshold', 0.15, ...
'PositionThreshold', pi/15, ...
'AmplitudeThreshold', 0.15, ...
'RecenterCurves', false);
% --- Prepare parameter values ---
N_params = numel(fitResultsMean);
amp2_vals = nan(1, N_params);
mu2_vals = nan(1, N_params);
sigma2_vals = nan(1, N_params);
for i = 1:N_params
pFit = fitResultsMean(i).pFit;
if all(~isnan(pFit))
% Successful fit → use fitted values
amp2_vals(i) = pFit(4);
mu2_vals(i) = pFit(5);
sigma2_vals(i) = pFit(6);
else
% Fit failed → leave as NaN (skipped automatically)
continue;
end
end
% --- Plot using plotMeanWithSE ---
Plotter.plotMeanWithSE(scan_reference_values, amp2_vals, ...
'Title', options.titleString, ...
'XLabel', '\alpha (degrees)', ...
'YLabel', 'Secondary peak amplitude', ...
'FigNum', 7, ...
'FontName', options.font, ...
'FontSize', 16);
% --- Plot using plotMeanWithSE ---
Plotter.plotMeanWithSE(scan_reference_values, mu2_vals, ...
'Title', options.titleString, ...
'XLabel', '\alpha (degrees)', ...
'YLabel', 'Secondary peak position (\theta, rad)', ...
'FigNum', 8, ...
'FontName', options.font, ...
'FontSize', 16);
Plotter.plotMeanWithSE(scan_reference_values, sigma2_vals, ...
'Title', options.titleString, ...
'XLabel', '\alpha (degrees)', ...
'YLabel', 'Secondary peak width (\sigma, rad)', ...
'FigNum', 9, ...
'FontName', options.font, ...
'FontSize', 16);
%% Inspect individual realizations of a single parameter
% --- Recenter curves first ---
results = Analyzer.recenterSpectralCurves( ...
spectral_analysis_results.S_theta_norm_all, ...
spectral_analysis_results.theta_vals/pi, ...
scan_reference_values, ...
'SearchRange', [0 90]); % degrees
% --- Restrict to desired theta range (e.g., 0 to 0.5*pi) ---
thetaMin = 0; % in units of pi (since you divided by pi)
thetaMax = 1; % corresponds to pi/2
mask = results.x_values >= thetaMin & results.x_values <= thetaMax;
results.x_values = results.x_values(mask);
% --- Apply the same mask to each curve set (1x10 cell, each 60x180) ---
for i = 1:numel(results.curves)
results.curves{i} = results.curves{i}(:, mask);
end
% --- Convert selected curve set (e.g., 5th) into 1x60 cell array of 1xN row vectors ---
paramIdx = 1; % <-- choose which scan point or curve set to analyze
curves_matrix = results.curves{paramIdx}; % 60xN numeric
curves_cell = num2cell(curves_matrix, 2); % 1x60 cell array
curves_cell = cellfun(@(x) x(:).', curves_cell, 'UniformOutput', false); % ensure 1xN row vectors
% --- Fit two-Gaussian model to these curves ---
[fitResults, rawCurves] = Analyzer.fitTwoGaussianCurves(...
curves_cell, ...
results.x_values*pi, ...
'MaxTheta', pi/2, ...
'ResidualThreshold', 0.15, ...
'PositionThreshold', pi/15, ...
'AmplitudeThreshold', 0.15, ...
'RecenterCurves', false);