Calculations/Data-Analyzer/+Plotter/plotSinglePCAResults.m

208 lines
8.4 KiB
Matlab

function plotSinglePCAResults(pcaResults, scan_parameter_values, scan_reference_values, varargin)
%% plotSinglePCAResults
% Author: Karthik
% Date: 2025-09-12
% Version: 1.0
%
% Description:
% Plots PCA results.
%
% Inputs:
% pcaResults - struct returned by computePCAfromImages
% scan_parameter_values, scan_reference_values
% varargin - name-value pairs (same as plotG2 plus 'FigNumRange','MaxPCToPlot')
%
% Notes:
% Optional notes, references.
% --- Parse name-value pairs ---
p = inputParser;
addParameter(p, 'XLabel', '', @(x) ischar(x) || isstring(x));
addParameter(p, 'FontName', 'Arial', @ischar);
addParameter(p, 'FontSize', 14, @isnumeric);
addParameter(p, 'Colormap', @Colormaps.coolwarm);
addParameter(p, 'SkipSaveFigures', false, @islogical);
addParameter(p, 'SaveDirectory', pwd, @ischar);
addParameter(p, 'FigNumRange', [], @(x) isnumeric(x) && all(x>0));
parse(p, varargin{:});
opts = p.Results;
Nx = pcaResults.Nx;
Ny = pcaResults.Ny;
coeff = pcaResults.coeff;
score = pcaResults.score;
explained = pcaResults.explained;
raw_scan_param_vals = scan_parameter_values;
unique_scan_param_vals = scan_reference_values;
numGroups = numel(unique_scan_param_vals);
colors = lines(numGroups);
% --- Figure numbering setup ---
if isempty(opts.FigNumRange)
figCount = 1;
figNums = [];
else
figNums = opts.FigNumRange;
figCount = 1;
end
figPos = [100 100 950 750];
%% --- Figure 1: PC1 Image ---
pc1_image = reshape(coeff(:,1), Nx, Ny);
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos);
imagesc(pc1_image); axis image off; colormap(opts.Colormap()); colorbar;
title(sprintf('First Principal Component (PC1) Image - Explains %.2f%% Variance', explained(1)), ...
'FontName', opts.FontName, 'FontSize', opts.FontSize + 2);
set(gca, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', 'PC1_Image.fig', 'SaveDirectory', opts.SaveDirectory);
end
figCount = figCount + 1;
%% --- Figure 2: PC1 Scores Distribution Scatterplot ---
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos); hold on;
for g = 1:numGroups
idx = raw_scan_param_vals == unique_scan_param_vals(g);
scatter(repmat(unique_scan_param_vals(g), sum(idx),1), score(idx,1), 36, colors(g,:), 'filled');
end
xlabel(opts.XLabel, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
ylabel('PC1 Score', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
title('Evolution of PC1 Scores', 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2);
grid on;
set(gca, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', 'PC1_Scatter.fig', 'SaveDirectory', opts.SaveDirectory);
end
figCount = figCount + 1;
%% --- Figure 3: PC1 Scores Distribution Histograms ---
numTiles = min(6, numGroups); % show up to 6 groups
tileIndices = round(linspace(1, numGroups, numTiles));
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos);
tLayout = tiledlayout(3,2,'TileSpacing','compact','Padding','compact');
for t = 1:numTiles
g = tileIndices(t);
idx = raw_scan_param_vals == unique_scan_param_vals(g);
data = score(idx,1);
nexttile;
histogram(data, 'Normalization', 'pdf', 'FaceColor', colors(g,:), 'FaceAlpha', 0.3);
hold on;
[f, xi] = ksdensity(data);
plot(xi, f, 'Color', colors(g,:), 'LineWidth', 2);
yl = ylim;
plot([median(data) median(data)], yl, 'k--', 'LineWidth', 1);
xlabel('PC1 Score', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
ylabel('Probability', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
title(sprintf('Control = %g', unique_scan_param_vals(g)), 'FontName', opts.FontName, 'FontSize', opts.FontSize);
grid on;
end
sgtitle('PC1 Score Distributions', 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2);
set(gca, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', 'PC1_Distributions.fig', 'SaveDirectory', opts.SaveDirectory);
end
figCount = figCount + 1;
%% --- Figure 4: PC1 Scores Distribution Boxplot ---
% Construct group labels explicitly
groupLabels = arrayfun(@num2str, raw_scan_param_vals, 'UniformOutput', false);
% Create categorical variable with specified order
groupCats = categorical(groupLabels, ...
arrayfun(@num2str, unique_scan_param_vals, 'UniformOutput', false), ...
'Ordinal', true);
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos);
% Plot boxplot with categorical groups
boxplot(score(:,1), groupCats);
xlabel(opts.XLabel, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
ylabel('PC1 Score', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
title('PC1 Score Boxplots by Group', 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2);
grid on;
set(gca, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', 'PC1_Boxplot.fig', 'SaveDirectory', opts.SaveDirectory);
end
figCount = figCount + 1;
%% --- Figure 5: PC1 Scores Distribution Mean ± SEM ---
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos);
meanScores = arrayfun(@(g) mean(score(raw_scan_param_vals == g,1)), unique_scan_param_vals);
semScores = arrayfun(@(g) std(score(raw_scan_param_vals == g,1))/sqrt(sum(raw_scan_param_vals == g)), unique_scan_param_vals);
errorbar(unique_scan_param_vals, meanScores, semScores, '--o', 'LineWidth', 2);
xlabel(opts.XLabel, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
ylabel('Mean PC1 Score ± SEM', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
title('Mean ± SEM of PC1 Scores', 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2);
grid on;
set(gca, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', 'PC1_MeanSEM.fig', 'SaveDirectory', opts.SaveDirectory);
end
figCount = figCount + 1;
%% --- Figure 6: PC1 Scores Distribution Cumulants ---
kappas = cell2mat(arrayfun(@(g) {Calculator.computeCumulants(score(raw_scan_param_vals == g,1), 4)}, unique_scan_param_vals));
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig,'Color','w','Position',[100 100 950 750]);
t = tiledlayout(2,2,'TileSpacing','Compact','Padding','Compact');
title(t, 'Cumulants of PC1 Scores', ...
'FontName', opts.FontName, 'FontSize', opts.FontSize+4);
cumulLabels = {'\kappa_1','\kappa_2','\kappa_3','\kappa_4'};
cumulTitles = {'Mean','Variance','Skewness','Binder Cumulant'};
for k = 1:4
ax = nexttile; hold(ax,'on');
plot(ax, unique_scan_param_vals, kappas(:, k), '-o', ...
'Color', [0.2 0.4 0.7], 'LineWidth', 2, 'MarkerSize', 8, ...
'MarkerFaceColor', [0.2 0.4 0.7]);
ylabel(ax, cumulLabels{k}, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
xlabel(ax, opts.XLabel, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
title(ax, cumulTitles{k}, 'FontName', opts.FontName, 'FontSize', opts.FontSize+2);
grid(ax,'on'); set(ax,'FontName',opts.FontName,'FontSize',opts.FontSize);
end
set(gca, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', 'PC1_BinderCumulant.fig', 'SaveDirectory', opts.SaveDirectory);
end
end