Calculations/Data-Analyzer/+Plotter/plotMultiplePCAResults.m

148 lines
5.6 KiB
Matlab

function plotMultiplePCAResults(pcaResults, scan_parameter_values, scan_reference_values, varargin)
%% plotMultiplePCAResults
% Author: Karthik
% Date: 2025-09-12
% Version: 1.0
%
% Description:
% Plots PCA results for multiple PCs.
%
% Inputs:
% pcaResults - struct returned by computePCAfromImages
% scan_parameter_values, scan_reference_values
% varargin - name-value pairs (same as plotG2 plus 'FigNumRange','MaxPCToPlot')
%
% Notes:
% Optional notes, references.
% --- Parse name-value pairs ---
p = inputParser;
addParameter(p, 'XLabel', '', @(x) ischar(x) || isstring(x));
addParameter(p, 'FontName', 'Arial', @ischar);
addParameter(p, 'FontSize', 14, @isnumeric);
addParameter(p, 'Colormap', @Colormaps.coolwarm);
addParameter(p, 'SkipSaveFigures', false, @islogical);
addParameter(p, 'SaveDirectory', pwd, @ischar);
addParameter(p, 'FigNumRange', [], @(x) isnumeric(x) && all(x>0));
addParameter(p, 'MaxPCToPlot', 1, @(x) isnumeric(x) && isscalar(x) && x>=1);
parse(p, varargin{:});
opts = p.Results;
Nx = pcaResults.Nx;
Ny = pcaResults.Ny;
coeff = pcaResults.coeff;
score = pcaResults.score;
explained = pcaResults.explained;
raw_scan_param_vals = scan_parameter_values;
unique_scan_param_vals = scan_reference_values;
numGroups = numel(unique_scan_param_vals);
% --- Figure numbering setup ---
if isempty(opts.FigNumRange)
figCount = 1;
figNums = [];
else
figNums = opts.FigNumRange;
figCount = 1;
end
figPos = [100 100 950 750];
%% --- Precompute score norms and group by scan parameter ---
numPCsToPlot = min(opts.MaxPCToPlot, size(coeff,2));
scoreNorms = sqrt(sum(score(:,1:numPCsToPlot).^2, 2));
groupedNorms = arrayfun(@(g) scoreNorms(raw_scan_param_vals == g), unique_scan_param_vals, 'UniformOutput', false);
% Mean and SEM per group
meanNorms = cellfun(@mean, groupedNorms);
semNorms = cellfun(@(x) std(x)/sqrt(numel(x)), groupedNorms);
% Cumulants (up to 4th order) per group
kappas = cell2mat(cellfun(@(x) Calculator.computeCumulants(x(:),4), groupedNorms, 'UniformOutput', false));
%% --- Figure 1: PC images ---
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos);
nRows = ceil(sqrt(numPCsToPlot));
nCols = ceil(numPCsToPlot/nRows);
tLayout = tiledlayout(nRows,nCols,'TileSpacing','compact','Padding','compact');
for pc = 1:numPCsToPlot
nexttile;
pc_image = reshape(coeff(:,pc), Nx, Ny);
imagesc(pc_image); axis image off;
colormap(opts.Colormap());
title(sprintf('PC%d (%.2f%%)', pc, explained(pc)), ...
'FontName', opts.FontName, 'FontSize', opts.FontSize);
end
sgtitle(sprintf('Principal Component Images (1-%d)', numPCsToPlot), ...
'FontName', opts.FontName, 'FontSize', opts.FontSize+2);
set(gca, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', sprintf('PC1to%d_Images.fig', numPCsToPlot), ...
'SaveDirectory', opts.SaveDirectory);
end
figCount = figCount + 1;
%% --- Figure 2: Mean ± SEM of score norms ---
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig, 'Color', 'w', 'Position', figPos);
errorbar(unique_scan_param_vals, meanNorms, semNorms, '--o', 'LineWidth', 2);
xlabel(opts.XLabel, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
ylabel(sprintf('‖Scores(1:%d)‖ ± SEM', numPCsToPlot), 'FontName', opts.FontName, 'FontSize', opts.FontSize);
title('Mean ± SEM of Score Norms', 'FontName', opts.FontName, 'FontSize', opts.FontSize+2);
set(gca, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
grid on;
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', sprintf('PC1to%d_Norm_MeanSEM.fig', numPCsToPlot), ...
'SaveDirectory', opts.SaveDirectory);
end
figCount = figCount + 1;
%% --- Figure 3: Cumulants of score norms ---
if ~isempty(figNums)
fig = figure(figNums(figCount)); clf;
else
fig = figure; clf;
end
set(fig,'Color','w','Position',[100 100 950 750]);
t = tiledlayout(2,2,'TileSpacing','Compact','Padding','Compact');
title(t, sprintf('Cumulants of Score Norms (1-%d PCs)', numPCsToPlot), ...
'FontName', opts.FontName, 'FontSize', opts.FontSize+4);
cumulLabels = {'\kappa_1','\kappa_2','\kappa_3','\kappa_4'};
cumulTitles = {'Mean','Variance','Skewness','Binder Cumulant'};
for k = 1:4
ax = nexttile; hold(ax,'on');
plot(ax, unique_scan_param_vals, kappas(:, k), '-o', ...
'Color', [0.2 0.4 0.7], 'LineWidth', 2, 'MarkerSize', 8, ...
'MarkerFaceColor', [0.2 0.4 0.7]);
ylabel(ax, cumulLabels{k}, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
xlabel(ax, opts.XLabel, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
title(ax, cumulTitles{k}, 'FontName', opts.FontName, 'FontSize', opts.FontSize+2);
grid(ax,'on'); set(ax,'FontName',opts.FontName,'FontSize',opts.FontSize);
end
set(gca, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
if ~opts.SkipSaveFigures
Plotter.saveFigure(fig, 'SaveFileName', sprintf('PC1to%d_Norm_Cumulants.fig', numPCsToPlot), ...
'SaveDirectory', opts.SaveDirectory);
end
end