Calculations/Data-Analyzer/+Plotter/plotSingleGaussianFitParameterPDF.m

160 lines
5.4 KiB
Matlab

function plotSingleGaussianFitParameterPDF(fitResults, scanValues, paramName, varargin)
%% plotSingleGaussianFitParameterPDF
% Plots 2D PDF (heatmap) of any parameter from single-Gaussian fit results
% for multiple scan parameters, with optional overlay of mean ± SEM.
%
% Inputs:
% fitResults - struct array from single-Gaussian fits
% scanValues - vector of scan parameter values
% paramName - string specifying the parameter to plot:
% 'A', 'mu', 'sigma', 'C', 'residual'
%
% Optional name-value pairs:
% 'OverlayMeanSEM' - logical, overlay mean ± SEM (default: true)
% (other name-value pairs same as original function)
% --- Parse optional inputs ---
p = inputParser;
addParameter(p, 'Title', '', @(x) ischar(x) || isstring(x));
addParameter(p, 'XLabel', '', @(x) ischar(x) || isstring(x));
addParameter(p, 'YLabel', '', @(x) ischar(x) || isstring(x));
addParameter(p, 'FigNum', 1, @(x) isscalar(x));
addParameter(p, 'FontName', 'Arial', @ischar);
addParameter(p, 'FontSize', 14, @isnumeric);
addParameter(p, 'SkipSaveFigures', false, @islogical);
addParameter(p, 'SaveFileName', 'FitParameterPDF.fig', @ischar);
addParameter(p, 'SaveDirectory', pwd, @ischar);
addParameter(p, 'NumPoints', 200, @(x) isscalar(x));
addParameter(p, 'DataRange', [], @(x) isempty(x) || numel(x)==2);
addParameter(p, 'XLim', [], @(x) isempty(x) || numel(x)==2);
addParameter(p, 'YLim', [], @(x) isempty(x) || numel(x)==2);
addParameter(p, 'Colormap', @jet);
addParameter(p, 'PlotType', 'histogram', @(x) any(validatestring(x,{'kde','histogram'})));
addParameter(p, 'NumberOfBins', 50, @isscalar);
addParameter(p, 'NormalizeHistogram', true, @islogical);
addParameter(p, 'OverlayMeanSEM', true, @islogical);
parse(p, varargin{:});
opts = p.Results;
% --- Map paramName to index ---
paramMap = struct('A',1,'mu',2,'sigma',3,'C',4,'residual',5);
if ~isfield(paramMap,paramName)
error('Invalid paramName. Must be one of: A, mu, sigma, C, residual');
end
paramIdx = paramMap.(paramName);
% --- Determine repetitions and scan parameters ---
N_params = numel(scanValues);
N_total = numel(fitResults);
N_reps = N_total / N_params;
% --- Extract chosen parameter values ---
paramValues = nan(N_reps, N_params);
for k = 1:N_total
paramIdxScan = mod(k-1, N_params) + 1;
repIdx = floor((k-1)/N_params) + 1;
if strcmpi(paramName, 'residual')
paramValues(repIdx, paramIdxScan) = fitResults(k).residual;
else
paramValues(repIdx, paramIdxScan) = fitResults(k).pFit(paramIdx);
end
end
% --- Mask out invalid zero fits ---
trueZeroMask = false(size(paramValues));
for i = 1:N_total
paramIdxScan = mod(i-1, N_params) + 1;
repIdx = floor((i-1)/N_params) + 1;
if ~fitResults(i).isValid && all(fitResults(i).pFit == 0)
trueZeroMask(repIdx, paramIdxScan) = true;
end
end
% --- Prepare data per scan parameter ---
dataCell = cell(N_params,1);
for i = 1:N_params
dataCell{i} = paramValues(:,i);
end
% --- Determine y-range ---
if isempty(opts.DataRange)
allData = cell2mat(dataCell(:));
y_min = min(allData);
y_max = max(allData);
else
y_min = opts.DataRange(1);
y_max = opts.DataRange(2);
end
% --- Prepare PDF grid/matrix ---
if strcmpi(opts.PlotType,'kde')
y_grid = linspace(y_min, y_max, opts.NumPoints);
pdf_matrix = zeros(numel(y_grid), N_params);
else
edges = linspace(y_min, y_max, opts.NumberOfBins+1);
binCenters = (edges(1:end-1) + edges(2:end))/2;
pdf_matrix = zeros(numel(binCenters), N_params);
end
% --- Compute PDFs ---
for i = 1:N_params
data = dataCell{i};
data = data(~isnan(data));
if isempty(data), continue; end
if strcmpi(opts.PlotType,'kde')
f = ksdensity(data, y_grid);
pdf_matrix(:,i) = f;
else
counts = histcounts(data, edges);
if opts.NormalizeHistogram
binWidth = edges(2) - edges(1);
counts = counts / (sum(counts) * binWidth);
end
pdf_matrix(:,i) = counts(:);
end
end
% --- Mask out scans without valid data ---
dataMask = ~isnan(paramValues);
maskPerScan = any(dataMask,1);
pdf_matrix(:, ~maskPerScan) = NaN;
% --- Plot heatmap ---
fig = figure(opts.FigNum); clf(fig);
set(fig, 'Color', 'w', 'Position', [100 100 950 750]);
if strcmpi(opts.PlotType,'kde')
h = imagesc(scanValues, y_grid, pdf_matrix);
set(h, 'AlphaData', ~isnan(pdf_matrix));
else
h = imagesc(scanValues, binCenters, pdf_matrix);
set(h, 'AlphaData', ~isnan(pdf_matrix));
end
set(gca, 'YDir', 'normal', 'FontName', opts.FontName, 'FontSize', opts.FontSize);
xlabel(opts.XLabel, 'FontSize', opts.FontSize, 'FontName', opts.FontName);
ylabel(opts.YLabel, 'FontSize', opts.FontSize, 'FontName', opts.FontName);
title(opts.Title, 'FontSize', opts.FontSize+2, 'FontWeight', 'bold');
cmap = feval(opts.Colormap);
colormap([1 1 1; cmap]); % white for NaN
c = colorbar;
ylabel(c, 'Probability Density', 'Rotation', -90, 'FontName', opts.FontName, 'FontSize', opts.FontSize);
if ~isempty(opts.XLim), xlim(opts.XLim); end
if ~isempty(opts.YLim), ylim(opts.YLim); end
% --- Overlay mean ± SEM ---
if opts.OverlayMeanSEM
meanParam = nanmean(paramValues,1);
semParam = nanstd(paramValues,0,1) ./ sqrt(sum(~isnan(paramValues),1));
hold on;
xVec = reshape(scanValues, 1, []);
fill([xVec, fliplr(xVec)], [meanParam - semParam, fliplr(meanParam + semParam)], ...
[0.2 0.4 0.8], 'FaceAlpha',0.2, 'EdgeColor','none');
plot(scanValues, meanParam, 'k-', 'LineWidth', 2);
end
end