118 lines
3.7 KiB
Matlab
118 lines
3.7 KiB
Matlab
% Script to compute the Relative Intensity Noise of a laser by recording the y-t signal
|
|
% by Mathias Neidig 2012_09_11
|
|
|
|
% The RIN is defined as
|
|
%
|
|
% RIN = 10* log10 [Single-sided power spectrum density / (average power)]
|
|
%
|
|
% and is given in [RIN] = dB/Hz
|
|
|
|
clear all
|
|
close all
|
|
|
|
%% Set the directory where the data is
|
|
|
|
dirDCData = ['C:\\Users\\Karthik\\Documents\\GitRepositories\\Calculations\\Time-Series-Analyzer\\Time-Series-Data\\20240807\\DC Coupling\\'];
|
|
dirACData = ['C:\\Users\\Karthik\\Documents\\GitRepositories\\Calculations\\Time-Series-Analyzer\\Time-Series-Data\\20240807\\AC Coupling\\'];
|
|
|
|
%% Load the files which contain: - the DC coupled y-t signal to obtain the averaged power
|
|
% - the AC coupled y-t signal to obtain the fluctuations
|
|
% - the AC coupled y-t signal with the beam blocked to obtain the background fluctuations
|
|
|
|
%-------------------------------------------------------------------------%
|
|
dcsignal = readmatrix( [ dirDCData 'P7.0_M3.0_OOL.csv'] ); %
|
|
acsignal = readmatrix( [ dirACData 'P7.0_M3.0_OOL.csv'] ); %
|
|
bgsignal = readmatrix( [ dirACData 'Bkg_OOL.csv'] ); %
|
|
%-------------------------------------------------------------------------%
|
|
|
|
%% Read out the important parameters
|
|
|
|
time_increment = 2E-6;
|
|
dctime = dcsignal(1:end, 1) .* time_increment;
|
|
actime = acsignal(1:end, 1) .* time_increment;
|
|
bgtime = bgsignal(1:end, 1) .* time_increment;
|
|
|
|
dcdata = dcsignal(1:end, 2);
|
|
acdata = acsignal(1:end, 2);
|
|
bgdata = bgsignal(1:end, 2);
|
|
|
|
N = length(actime); % #samples
|
|
f_s = 1/time_increment; % Sample Frequency
|
|
delta_f = f_s/N; % step size in frequency domain
|
|
delta_t = 1/f_s; % time step
|
|
|
|
%% Custom Control Parameters
|
|
|
|
% Choose smoothing parameter; has to be odd
|
|
%----------------%
|
|
span = 21; %
|
|
%----------------%
|
|
|
|
%% Computes the RIN
|
|
|
|
% compute the average power (voltage^2)
|
|
average_P = mean(dcdata.*dcdata);
|
|
|
|
% compute the power spectrum density FFT(A) x FFT*(A)/N^2 of the source & the bg
|
|
psd_src = fft(acdata) .* conj(fft(acdata))/N^2;
|
|
psd_bg = fft(bgdata) .* conj(fft(bgdata))/N^2;
|
|
|
|
% converts the psd to the single-sided psd --> psd is symmetric around zero --> omit
|
|
% negative frequencies and put the power into the positive ones --> spsd
|
|
|
|
for i = 1 : N/2+1
|
|
if i>1
|
|
spsd_src(i) = 2*psd_src(i);
|
|
spsd_bg(i) = 2*psd_bg(i);
|
|
else spsd_src(i) = psd_src(i);
|
|
spsd_bg(i) = psd_bg(i);
|
|
end
|
|
end
|
|
|
|
% smooths the spsd by doing a moving average
|
|
spsd_src_smooth = smooth(spsd_src,span,'moving');
|
|
spsd_bg_smooth = smooth(spsd_bg, span,'moving');
|
|
|
|
% calculates the RIN given in dB/Hz; the factor delta_f is needed to convert from dB/bin into dB/Hz
|
|
RIN_src_smooth = 10*log10(spsd_src_smooth/(average_P*delta_f));
|
|
RIN_bg_smooth = 10*log10(spsd_bg_smooth /(average_P*delta_f));
|
|
|
|
% creates an array for the frequencies up to half the sampling frequency
|
|
f = f_s/2 * linspace(0,1,N/2+1);
|
|
f_smooth = smooth(f,span,'moving');
|
|
|
|
% Plots the RIN vs frequency
|
|
f_ = clf;
|
|
figure(f_);
|
|
semilogx(f_smooth,RIN_bg_smooth,'k-')
|
|
hold on
|
|
semilogx(f_smooth,RIN_src_smooth,'r-')
|
|
xlabel('Frequency [Hz]')
|
|
ylabel('RIN [dB/Hz]')
|
|
xlim([min(f) max(f)]);
|
|
title('\bf Relative Intensity Noise of ODT Arm 1')
|
|
legend('Background PD Box', 'Power:7 V, Mod:-3.0 V','Location','NorthEast');
|
|
% text(1e5,-95,['\bf MovingAverage = ' num2str(span) ]);
|
|
grid on
|
|
% optional: save the picture without editing wherever you want
|
|
%------------------------------------------%
|
|
% saveas(f_,'FileName','png'); %
|
|
%------------------------------------------%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|