222 lines
9.4 KiB
Matlab
222 lines
9.4 KiB
Matlab
%% This script is testing the functionalities of the MOT Capture Process Simulation Classes
|
|
%
|
|
% Important: Run only sectionwise!!
|
|
|
|
%% - Testing the MOTCaptureProcess-Class
|
|
% - Create MOTCaptureProcess object with specified options
|
|
% - Automatically creates Beams objects
|
|
OptionsStruct = struct;
|
|
OptionsStruct.ErrorEstimationMethod = 'bootstrap'; % 'jackknife' | 'bootstrap'
|
|
OptionsStruct.NumberOfAtoms = 10000;
|
|
OptionsStruct.TimeStep = 50e-06; % in s
|
|
OptionsStruct.SimulationTime = 4e-03; % in s
|
|
OptionsStruct.SpontaneousEmission = true;
|
|
OptionsStruct.Sideband = false;
|
|
OptionsStruct.PushBeam = true;
|
|
OptionsStruct.Gravity = true;
|
|
OptionsStruct.BackgroundCollision = true;
|
|
OptionsStruct.SaveData = false;
|
|
OptionsStruct.SaveDirectory = 'C:\DY LAB\MOT Simulation Project\Calculations\Code\MOT Capture Process Simulation';
|
|
options = Helper.convertstruct2cell(OptionsStruct);
|
|
clear OptionsStruct
|
|
|
|
Oven = Simulator.Oven(options{:});
|
|
MOT2D = Simulator.TwoDimensionalMOT(options{:});
|
|
Beams = MOT2D.Beams;
|
|
|
|
%% - Run Simulation
|
|
MOT2D.NumberOfAtoms = 5000;
|
|
MOT2D.SidebandBeam = false;
|
|
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
|
|
CoolingBeam.Power = 0.4;
|
|
CoolingBeam.Waist = 13.3e-03;
|
|
CoolingBeam.Detuning = -1.67*Helper.PhysicsConstants.BlueLinewidth;
|
|
PushBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Push'), Beams)};
|
|
PushBeam.Power = 0.025;
|
|
PushBeam.Waist = 0.81e-03;
|
|
PushBeam.Detuning = 0;
|
|
[LoadingRate, ~] = MOT2D.runSimulation(Oven);
|
|
%% - Plot initial distribution
|
|
% - sampling the position distribution
|
|
InitialPositions = Oven.initialPositionSampling();
|
|
% - sampling the velocity distribution
|
|
InitialVelocities = Oven.initialVelocitySampling(MOT2D);
|
|
NumberOfBins = 100;
|
|
Plotter.plotPositionAndVelocitySampling(NumberOfBins, InitialPositions, InitialVelocities);
|
|
|
|
%% - Plot distributions of magnitude and direction of initial velocities
|
|
NumberOfBins = 50;
|
|
Plotter.plotInitialVeloctiySamplingVsAngle(Oven, MOT2D, NumberOfBins)
|
|
|
|
%% - Plot Magnetic Field
|
|
XAxisRange = [-5 5];
|
|
YAxisRange = [-5 5];
|
|
ZAxisRange = [-5 5];
|
|
Plotter.visualizeMagneticField(MOT2D, XAxisRange, YAxisRange, ZAxisRange)
|
|
|
|
%% - Plot MFP & VP for different temperatures
|
|
TemperatureinCelsius = linspace(750,1100,2000); % Temperature in Celsius
|
|
Plotter.plotMeanFreePathAndVapourPressureVsTemp(TemperatureinCelsius)
|
|
|
|
%% - Plot the Free Molecular Flux for different temperatures
|
|
Temperature = [950, 1000, 1050]; % Temperature
|
|
Plotter.plotFreeMolecularFluxVsTemp(Oven,Temperature)
|
|
|
|
%% - Plot Angular Distribution for different Beta
|
|
Beta = [0.5, 0.1 , 0.05, 0.02, 0.01]; %Beta = 2 * radius / length of the tube
|
|
Plotter.plotAngularDistributionForDifferentBeta(Oven, Beta)
|
|
|
|
%% - Plot Capture Velocity
|
|
Plotter.plotCaptureVelocityVsAngle(Oven, MOT2D); % Takes a long time to plot!
|
|
|
|
%% - Plot Phase Space with Acceleration Field
|
|
MOT2D.SidebandBeam = false;
|
|
MOT2D.NumberOfAtoms = 50;
|
|
MinimumVelocity = 0;
|
|
MaximumVelocity = 150;
|
|
NumberOfBins = 200; %Along each axis
|
|
IncidentAtomDirection = 0*2*pi/360;
|
|
IncidentAtomPosition = 0;
|
|
Plotter.plotPhaseSpaceWithAccelerationField(Oven, MOT2D, MinimumVelocity, MaximumVelocity, NumberOfBins, IncidentAtomDirection, IncidentAtomPosition)
|
|
|
|
%% - Plot Trajectories along the 3 directions
|
|
MOT2D.NumberOfAtoms = 100;
|
|
MaximumVelocity = 150;
|
|
IncidentAtomDirection = 0*2*pi/360;
|
|
IncidentAtomPosition = 0;
|
|
|
|
%% - Positions
|
|
Plotter.plotDynamicalQuantities(Oven, MOT2D, MaximumVelocity, IncidentAtomDirection, IncidentAtomPosition, 'PlotPositions', true);
|
|
|
|
%% - Velocities
|
|
Plotter.plotDynamicalQuantities(Oven, MOT2D, MaximumVelocity, IncidentAtomDirection, IncidentAtomPosition, 'PlotVelocities', true);
|
|
|
|
%% - Scan parameters: One-Parameter Scan
|
|
|
|
MOT2D.NumberOfAtoms = 5000;
|
|
MOT2D.TotalPower = 0.4;
|
|
CoolingBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'Blue'), Beams)};
|
|
|
|
NumberOfPointsForFirstParam = 5; %iterations of the simulation
|
|
% Scan Cooling Beam Power
|
|
PowerArray = linspace(0.1, 1.0, NumberOfPointsForFirstParam) * MOT2D.TotalPower;
|
|
% Scan Cooling Beam Detuning
|
|
% DetuningArray = linspace(-0.5,-10, NumberOfPointsForParam) * Helper.PhysicsConstants.BlueLinewidth;
|
|
|
|
LoadingRateArray = zeros(1,NumberOfPointsForFirstParam);
|
|
StandardErrorArray = zeros(1,NumberOfPointsForFirstParam);
|
|
ConfidenceIntervalArray = zeros(NumberOfPointsForFirstParam, 2);
|
|
|
|
tStart = tic;
|
|
for i=1:NumberOfPointsForFirstParam
|
|
CoolingBeam.Power = PowerArray(i);
|
|
[LoadingRateArray(i), StandardErrorArray(i), ConfidenceIntervalArray(i, :)] = MOT2D.runSimulation(Oven);
|
|
end
|
|
tEnd = toc(tStart);
|
|
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
|
|
|
|
clear OptionsStruct
|
|
|
|
% - Plot results
|
|
|
|
ParameterArray = PowerArray;
|
|
QuantityOfInterestArray = LoadingRateArray;
|
|
|
|
OptionsStruct = struct;
|
|
OptionsStruct.RescalingFactorForParameter = 1000;
|
|
OptionsStruct.XLabelString = 'Cooling Beam Power (mW)';
|
|
OptionsStruct.RescalingFactorForYQuantity = 1e-10;
|
|
OptionsStruct.ErrorsForYQuantity = true;
|
|
OptionsStruct.ErrorsArray = StandardErrorArray;
|
|
OptionsStruct.CIForYQuantity = true;
|
|
OptionsStruct.CIArray = ConfidenceIntervalArray;
|
|
OptionsStruct.RemoveOutliers = true;
|
|
OptionsStruct.YLabelString = 'Loading rate (x 10^{10} atoms/s)';
|
|
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
|
|
|
|
options = Helper.convertstruct2cell(OptionsStruct);
|
|
|
|
Plotter.plotResultForOneParameterScan(ParameterArray, QuantityOfInterestArray, options{:})
|
|
|
|
clear OptionsStruct
|
|
|
|
if MOT2D.DoSave
|
|
LoadingRate = struct;
|
|
LoadingRate.Values = LoadingRateArray;
|
|
LoadingRate.Errors = StandardErrorArray;
|
|
LoadingRate.CI = ConfidenceIntervalArray;
|
|
MOT2D.Results = LoadingRate;
|
|
SaveFolder = [MOT2D.SaveDirectory filesep 'Results'];
|
|
Filename = ['OneParameterScan_' datestr(now,'yyyymmdd_HHMM')];
|
|
eval([sprintf('%s_Object', Filename) ' = MOT2D;']);
|
|
mkdir(SaveFolder);
|
|
save([SaveFolder filesep Filename], sprintf('%s_Object', Filename));
|
|
end
|
|
|
|
%% - Scan parameters: Two-Parameter Scan
|
|
|
|
MOT2D.NumberOfAtoms = 50;
|
|
MOT2D.TotalPower = 0.6;
|
|
MOT2D.SidebandBeam = false;
|
|
SidebandBeam = Beams{cellfun(@(x) strcmpi(x.Alias, 'BlueSideband'), Beams)};
|
|
|
|
NumberOfPointsForFirstParam = 10; %iterations of the simulation
|
|
NumberOfPointsForSecondParam = 10;
|
|
|
|
% Scan Sideband Detuning and Power Ratio
|
|
DetuningArray = linspace(-0.5,-10, NumberOfPointsForFirstParam) * Helper.PhysicsConstants.BlueLinewidth;
|
|
% SidebandPowerArray = linspace(0.1,0.9, NumberOfPointsForSecondParam) * MOT2D.TotalPower;
|
|
% BluePowerArray = MOT2D.TotalPower - SidebandPowerArray;
|
|
BluePowerArray = linspace(0.1,0.9, NumberOfPointsForSecondParam) * MOT2D.TotalPower;
|
|
|
|
LoadingRateArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam);
|
|
StandardErrorArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam);
|
|
ConfidenceIntervalArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam, 2);
|
|
|
|
tStart = tic;
|
|
for i = 1:NumberOfPointsForFirstParam
|
|
SidebandBeam.Detuning = DetuningArray(i);
|
|
for j = 1:NumberOfPointsForSecondParam
|
|
SidebandBeam.Power = SidebandPowerArray(j);
|
|
CoolingBeam.Power = BluePowerArray(j);
|
|
[LoadingRateArray(i,j), StandardErrorArray(i,j), ConfidenceIntervalArray(i,j,:)] = MOT2D.runSimulation(Oven);
|
|
end
|
|
end
|
|
tEnd = toc(tStart);
|
|
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
|
|
|
|
clear OptionsStruct
|
|
|
|
% - Plot results
|
|
|
|
FirstParameterArray = DetuningArray;
|
|
SecondParameterArray = SidebandPowerArray;
|
|
QuantityOfInterestArray = LoadingRateArray;
|
|
|
|
OptionsStruct = struct;
|
|
OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.BlueLinewidth)^-1;
|
|
OptionsStruct.XLabelString = 'Sideband Detuning (\Delta/\Gamma)';
|
|
OptionsStruct.RescalingFactorForSecondParameter = 1000;
|
|
OptionsStruct.YLabelString = 'Sideband Power (mW)';
|
|
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-11;
|
|
OptionsStruct.ZLabelString = 'Loading rate (x 10^{11} atoms/s)';
|
|
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', MOT2D.MagneticGradient * 100);
|
|
|
|
options = Helper.convertstruct2cell(OptionsStruct);
|
|
|
|
Plotter.plotResultForTwoParameterScan(FirstParameterArray, SecondParameterArray, QuantityOfInterestArray, options{:})
|
|
|
|
clear OptionsStruct
|
|
|
|
if MOT2D.DoSave
|
|
LoadingRate = struct;
|
|
LoadingRate.Values = LoadingRateArray;
|
|
LoadingRate.Errors = StandardErrorArray;
|
|
LoadingRate.CI = ConfidenceIntervalArray;
|
|
MOT2D.Results = LoadingRate;
|
|
SaveFolder = [MOT2D.SaveDirectory filesep 'Results'];
|
|
Filename = ['TwoParameterScan_' datestr(now,'yyyymmdd_HHMM')];
|
|
eval([sprintf('%s_Object', Filename) ' = MOT2D;']);
|
|
mkdir(SaveFolder);
|
|
save([SaveFolder filesep Filename], sprintf('%s_Object', Filename));
|
|
end |