Calculations/Imaging-Response-Function-Extractor/extractIRF.m

486 lines
17 KiB
Matlab

%% Parameters
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"];
folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/Imaging-Response-Function-Extractor/";
run = '0096';
folderPath = strcat(folderPath, run);
cam = 5;
angle = 0;
center = [1137, 2023];
span = [255, 255];
fraction = [0.1, 0.1];
NA = 0.6;
pixel_size = 4.6e-6;
lambda = 421e-9;
% The diameter of the first dark concentric ring surrounding the central intensity peak of a point spread function (or Airy disk)
d = 1.22 * (lambda / NA);
% Abbe limit
AbbeLimit = lambda / (2 * NA);
% Maximum resolvable spatial frequency for the coherent case
k_cutoff = (NA/lambda) * 1e-6; % (in units of 1/µm)
removeFringes = false;
%% Compute OD image, rotate and extract ROI for analysis
% Get a list of all files in the folder with the desired file name pattern.
filePattern = fullfile(folderPath, '*.h5');
files = dir(filePattern);
refimages = zeros(span(1) + 1, span(2) + 1, length(files));
absimages = zeros(span(1) + 1, span(2) + 1, length(files));
for k = 1 : length(files)
baseFileName = files(k).name;
fullFileName = fullfile(files(k).folder, baseFileName);
fprintf(1, 'Now reading %s\n', fullFileName);
atm_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle));
bkg_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
dark_img = im2double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)';
absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img), center, span), fraction)';
end
% Fringe removal
if removeFringes
optrefimages = removefringesInImage(absimages, refimages);
absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :);
nimgs = size(absimages_fringe_removed,3);
od_imgs = cell(1, nimgs);
for i = 1:nimgs
od_imgs{i} = absimages_fringe_removed(:, :, i);
end
else
nimgs = size(absimages(:, :, :),3);
od_imgs = cell(1, nimgs);
for i = 1:nimgs
od_imgs{i} = absimages(:, :, i);
end
end
%% Compute the Density Noise Spectrum
mean_subtracted_od_imgs = cell(1, length(od_imgs));
mean_od_img = mean(cat(3, od_imgs{:}), 3, 'double');
density_fft = cell(1, length(od_imgs));
density_noise_spectrum = cell(1, length(od_imgs));
[Nx, Ny] = size(mean_od_img);
dx = pixel_size;
dy = pixel_size;
xvals = (1:Nx)*dx*1e6;
yvals = (1:Ny)*dy*1e6;
dvx = 1 / (Nx * dx); % reciprocal space increment in the X direction (in units of 1/dx)
dvy = 1 / (Ny * dy); % reciprocal space increment in the Y direction (in units of 1/dy)
% Create the frequency axes
vx = (-Nx/2:Nx/2-1) * dvx; % Frequency axis in X (in units of 1/dx)
vy = (-Ny/2:Ny/2-1) * dvy; % Frequency axis in Y (in units of 1/dy)
% Create the Wavenumber axes
kx = 2*pi*vx; % Wavenumber axis in X
ky = 2*pi*vy; % Wavenumber axis in Y
% Create Circular Mask
n = 2^8; % size of mask
mask = zeros(n);
I = 1:n;
x = I-n/2; % mask x-coordinates
y = n/2-I; % mask y-coordinates
[X,Y] = meshgrid(x,y); % create 2-D mask grid
R = 32; % aperture radius
A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
mask(A) = 1; % set mask elements inside aperture to 1
% Calculate Power Spectrum and plot
figure(1)
clf
set(gcf,'Position',[100, 100, 1200, 800])
% Create tiled layout with 2 rows and 3 columns
t = tiledlayout(2, 3, 'TileSpacing', 'compact', 'Padding', 'compact');
for k = 1 : length(od_imgs)
mean_subtracted_od_imgs{k} = od_imgs{k} - mean_od_img;
masked_img = mean_subtracted_od_imgs{k} .* mask;
density_fft{k} = (1/numel(masked_img)) * abs(fftshift(fft2(masked_img)));
density_noise_spectrum{k} = density_fft{k}.^2;
% Tile 1: Single-shot image
nexttile(1);
imagesc(xvals, yvals, od_imgs{k})
xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
axis equal tight;
colorbar
colormap jet;
set(gca,'YDir','normal')
title('Single-shot image', 'FontSize', 16);
% Tile 2: Averaged density image
nexttile(2);
imagesc(xvals, yvals, mean_od_img)
xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
axis equal tight;
colorbar
colormap jet;
set(gca,'YDir','normal')
title('Averaged density image', 'FontSize', 16);
% Tile 3: Image noise = Single-shot - Average
nexttile(3);
imagesc(xvals, yvals, mean_subtracted_od_imgs{k})
xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
axis equal tight;
colorbar
colormap jet;
set(gca,'YDir','normal')
title('Image noise = Single-shot - Average', 'FontSize', 16);
% Tile 4: Masked Noise
nexttile(4);
imagesc(xvals, yvals, mean_subtracted_od_imgs{k} .* mask)
xlabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
ylabel('\mum', 'Interpreter', 'tex', 'FontSize', 16)
axis equal tight;
colorbar
colormap jet;
set(gca,'YDir','normal')
title('Masked Noise', 'FontSize', 16);
% Tile 5: DFT
nexttile(5);
imagesc(kx*1E-6, ky*1E-6, abs(log2(density_fft{k})))
xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
axis equal tight;
colorbar
colormap jet;
set(gca,'YDir','normal')
title('DFT', 'FontSize', 16);
% Tile 6: Density Noise Spectrum = |DFT|^2
nexttile(6);
imagesc(kx*1E-6, ky*1E-6, abs(log2(density_noise_spectrum{k})))
xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
axis equal tight;
colorbar
colormap jet;
set(gca,'YDir','normal')
title('Density Noise Spectrum', 'FontSize', 16);
drawnow;
end
%% Compute the average 2D spectrum and do radial averaging to get the 1D spectrum
% Compute the average power spectrum.
averagePowerSpectrum = mean(cat(3, density_noise_spectrum{:}), 3, 'double');
% Plot the average power spectrum.
figure(2)
clf
set(gcf,'Position',[100, 100, 1500, 700])
% Create tiled layout with 2 rows and 3 columns
t = tiledlayout(1, 2, 'TileSpacing', 'compact', 'Padding', 'compact');
nexttile(1);
imagesc(abs(10*log10(averagePowerSpectrum)))
axis equal tight;
colorbar
colormap(flip(jet));
title('Average Density Noise Spectrum', 'FontSize', 16);
grid on;
centers = ginput;
radius = 3;
% Plot where clicked.
hVC = viscircles(centers, radius, 'Color', 'r', 'LineWidth', 2);
xc = centers(:,1);
yc = centers(:,2);
[yDim, xDim] = size(averagePowerSpectrum);
[xx,yy] = meshgrid(1:yDim,1:xDim);
mask = false(xDim,yDim);
for ii = 1:length(centers)
mask = mask | hypot(xx - xc(ii), yy - yc(ii)) <= radius;
end
mask = not(mask);
% Ask user if the circle is acceptable.
message = sprintf('Is this acceptable?');
button = questdlg(message, message, 'Accept', 'Reject and Quit', 'Accept');
if contains(button, 'Accept','IgnoreCase',true)
image = mask.*averagePowerSpectrum;
image(image==0) = NaN;
imagesc(kx*1E-6, ky*1E-6, mask.*abs(10*log10(averagePowerSpectrum)))
hold on
xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
axis equal tight;
colorbar
colormap(flip(jet));
title('Average Density Noise Spectrum', 'FontSize', 16);
grid on;
elseif contains(button, 'Quit','IgnoreCase',true)
delete(hVC); % Delete the circle from the overlay.
image = averagePowerSpectrum;
imagesc(kx*1E-6, ky*1E-6, abs(10*log10(averagePowerSpectrum)))
xlabel('k_x (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
ylabel('k_y (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
axis equal tight;
colorbar
colormap(flip(jet));
title('Average Density Noise Spectrum', 'FontSize', 16);
grid on;
end
% Fit
nexttile(2);
radialStep = 1; % in pixels
[R, Profile] = getRadialProfile(averagePowerSpectrum, radialStep);
kvec = (2 * pi) .* R(2:end) .* (sqrt(dvx^2 + dvy^2) * radialStep) * 1E-6; % in units of micrometers^-1
NormalisedProfile = (Profile(2:end) - min(Profile(2:end)))./(max(Profile(2:end)) - min(Profile(2:end)));
kmax = k_cutoff;
% Define the objective function to minimize (the difference between model and data)
objectiveFunction = @(C, k) RadialImagingResponseFunction(C, k, kmax) - NormalisedProfile;
% Initial guess for the parameters [C1, C2, C3, C4, C5, C6]
initialGuess = [2E6, 1E-6, 1E-6, 1E-6, 1E-6, 0.8];
% Set upper and lower bounds for the parameters (optional)
lb = [-Inf, -Inf, -Inf, -Inf, -Inf, 0]; % Lower bounds
ub = [Inf, Inf, Inf, Inf, Inf, 1]; % Upper bounds
% Perform the non-linear least squares fitting using lsqcurvefit
options = optimoptions('lsqcurvefit', 'Display', 'iter'); % Display iterations during fitting
[C_fit, resnorm] = lsqcurvefit(objectiveFunction, initialGuess, kvec, NormalisedProfile, lb, ub, options);
% Plot the fitted result against the data
k_new = linspace(kvec(1), kvec(end), 1000);
fittedProfile = RadialImagingResponseFunction(C_fit, k_new, kmax);
nexttile(2)
plot(kvec, NormalisedProfile, 'o-', 'MarkerSize', 4, 'MarkerFaceColor', 'none', 'DisplayName', 'Radial (average) profile');
hold on
plot(k_new, fittedProfile, 'r-', 'DisplayName', 'Fitted Curve');
set(gca, 'XScale', 'log'); % Setting x-axis to log scale
xlabel('k_\rho (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
ylabel('Normalised amplitude', 'FontSize', 16)
title('Modulation Transfer Function', 'FontSize', 16);
legend('FontSize', 16);
grid on;
%% Helper Functions
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
% image must be a 2D numerical array
[dim1, dim2] = size(img);
s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction));
s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2);
s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction));
s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2);
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
end
function ret = subtractBackgroundOffset(img, fraction)
% Remove the background from the image.
% :param dataArray: The image
% :type dataArray: xarray DataArray
% :param x_fraction: The fraction of the pixels used in x axis
% :type x_fraction: float
% :param y_fraction: The fraction of the pixels used in y axis
% :type y_fraction: float
% :return: The image after removing background
% :rtype: xarray DataArray
x_fraction = fraction(1);
y_fraction = fraction(2);
offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction);
ret = img - offset;
end
function ret = cropODImage(img, center, span)
% Crop the image according to the region of interest (ROI).
% :param dataSet: The images
% :type dataSet: xarray DataArray or DataSet
% :param center: The center of region of interest (ROI)
% :type center: tuple
% :param span: The span of region of interest (ROI)
% :type span: tuple
% :return: The cropped images
% :rtype: xarray DataArray or DataSet
x_start = floor(center(1) - span(1) / 2);
x_end = floor(center(1) + span(1) / 2);
y_start = floor(center(2) - span(2) / 2);
y_end = floor(center(2) + span(2) / 2);
ret = img(y_start:y_end, x_start:x_end);
end
function ret = calculateODImage(imageAtom, imageBackground, imageDark)
% Calculate the OD image for absorption imaging.
% :param imageAtom: The image with atoms
% :type imageAtom: numpy array
% :param imageBackground: The image without atoms
% :type imageBackground: numpy array
% :param imageDark: The image without light
% :type imageDark: numpy array
% :return: The OD images
% :rtype: numpy array
numerator = imageBackground - imageDark;
denominator = imageAtom - imageDark;
numerator(numerator == 0) = 1;
denominator(denominator == 0) = 1;
ret = -log(double(abs(denominator ./ numerator)));
if numel(ret) == 1
ret = ret(1);
end
end
function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
% removefringesInImage - Fringe removal and noise reduction from absorption images.
% Creates an optimal reference image for each absorption image in a set as
% a linear combination of reference images, with coefficients chosen to
% minimize the least-squares residuals between each absorption image and
% the optimal reference image. The coefficients are obtained by solving a
% linear set of equations using matrix inverse by LU decomposition.
%
% Application of the algorithm is described in C. F. Ockeloen et al, Improved
% detection of small atom numbers through image processing, arXiv:1007.2136 (2010).
%
% Syntax:
% [optrefimages] = removefringesInImage(absimages,refimages,bgmask);
%
% Required inputs:
% absimages - Absorption image data,
% typically 16 bit grayscale images
% refimages - Raw reference image data
% absimages and refimages are both cell arrays containing
% 2D array data. The number of refimages can differ from the
% number of absimages.
%
% Optional inputs:
% bgmask - Array specifying background region used,
% 1=background, 0=data. Defaults to all ones.
% Outputs:
% optrefimages - Cell array of optimal reference images,
% equal in size to absimages.
%
% Dependencies: none
%
% Authors: Shannon Whitlock, Caspar Ockeloen
% Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and
% S. Whitlock, Improved detection of small atom numbers through
% image processing, arXiv:1007.2136
% Email:
% May 2009; Last revision: 11 August 2010
% Process inputs
% Set variables, and flatten absorption and reference images
nimgs = size(absimages,3);
nimgsR = size(refimages,3);
xdim = size(absimages(:,:,1),2);
ydim = size(absimages(:,:,1),1);
R = single(reshape(refimages,xdim*ydim,nimgsR));
A = single(reshape(absimages,xdim*ydim,nimgs));
optrefimages=zeros(size(absimages)); % preallocate
if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end
k = find(bgmask(:)==1); % Index k specifying background region
% Ensure there are no duplicate reference images
% R=unique(R','rows')'; % comment this line if you run out of memory
% Decompose B = R*R' using singular value or LU decomposition
[L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition
for j=1:nimgs
b=R(k,:)'*A(k,j);
% Obtain coefficients c which minimise least-square residuals
lower.LT = true; upper.UT = true;
c = linsolve(U,linsolve(L,b(p,:),lower),upper);
% Compute optimised reference image
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
end
end
function [M] = ImagingResponseFunction(B)
x = -100:100;
y = x;
[X,Y] = meshgrid(x,y);
R = sqrt(X.^2+Y.^2);
PHI = atan2(X,Y)+pi;
%fit parameters
tau = B(1);
alpha = B(2);
S0 = B(3);
phi = B(4);
beta = B(5);
delta = B(6);
A = B(7);
C = B(8);
a = B(9);
U = heaviside(1-R/a).*exp(-R.^2/a^2/tau^2);
THETA = S0*(R/a).^4 + alpha*(R/a).^2.*cos(2*PHI-2*phi) + beta*(R/a).^2;
p = U.*exp(1i.*THETA);
M = A*abs((ifft2(real(exp(1i*delta).*fftshift(fft2(p)))))).^2 + C;
end
function [R, Zr] = getRadialProfile(data, radialStep)
x = (1:size(data,2))-size(data,2)/2;
y = (1:size(data,1))-size(data,1)/2;
% coordinate grid:
[X,Y] = meshgrid(x,y);
% creating circular layers
Z_integer = round(abs(X+1i*Y)/radialStep)+1;
% very fast MatLab calculations:
R = accumarray(Z_integer(:),abs(X(:)+1i*Y(:)),[],@mean);
Zr = accumarray(Z_integer(:),data(:),[],@mean);
end
function [RadialResponseFunc] = RadialImagingResponseFunction(C, k, kmax)
A = heaviside(1 - k/kmax) .* exp(-C(1) * k.^4);
W = C(2) + C(3) * k.^2 + C(4) * k.^4;
RadialResponseFunc = 0;
for n = -30:30
RadialResponseFunc = RadialResponseFunc + ...
besselj(n, C(5) * k.^2).^2 + ...
besselj(n, C(5) * k.^2) .* besselj(-n, C(5) * k.^2) .* cos(2 * W);
end
RadialResponseFunc = C(6) * 1/2 * A .* RadialResponseFunc;
end