511 lines
24 KiB
Python
511 lines
24 KiB
Python
import numpy as np
|
|
from scipy.optimize import curve_fit
|
|
from scipy import interpolate
|
|
from astropy import units as u, constants as ac
|
|
|
|
from Potentials import *
|
|
from Helpers import *
|
|
|
|
DY_POLARIZABILITY = 184.4 # in a.u, most precise measured value of Dy polarizability
|
|
DY_MASS = 164*u.u
|
|
DY_DIPOLE_MOMENT = 9.93 * ac.muB
|
|
|
|
#####################################################################
|
|
# AUXILIARY COMPUTATIONS
|
|
#####################################################################
|
|
|
|
def calculateHeatingRate(w_x, w_y, P, linewidth, detuning, wavelength = 1.064*u.um):
|
|
U = trap_depth(w_x, w_y, P).decompose()
|
|
Gamma_sr = ((linewidth * U) / (ac.hbar * detuning)).decompose()
|
|
E_recoil = (ac.h**2 / (2 * DY_MASS * wavelength**2)).decompose()
|
|
T_recoil = (E_recoil/ac.k_B).to(u.uK)
|
|
HeatingRate = 2/3 * Gamma_sr * T_recoil
|
|
return HeatingRate, T_recoil, Gamma_sr, U
|
|
|
|
def calculateAtomNumber(NCount, pixel_size, magnification, eta):
|
|
sigma = 8.468e-14 * (u.m)**(2)
|
|
return (1/eta * 1/sigma * NCount * pixel_size**2/magnification**2).decompose()
|
|
|
|
def meanThermalVelocity(T, m = DY_MASS):
|
|
return 4 * np.sqrt((ac.k_B * T) /(np.pi * m))
|
|
|
|
def particleDensity(w_x, w_z, Power, N, T, m = DY_MASS): # For a thermal cloud
|
|
v_x = calculateTrapFrequency(w_x, w_z, Power, dir = 'x')
|
|
v_y = calculateTrapFrequency(w_x, w_z, Power, dir = 'y')
|
|
v_z = calculateTrapFrequency(w_x, w_z, Power, dir = 'z')
|
|
return N * (2 * np.pi)**3 * (v_x * v_y * v_z) * (m / (2 * np.pi * ac.k_B * T))**(3/2)
|
|
|
|
def calculateParticleDensityFromMeasurements(v_x, dv_x, v_y, dv_y, v_z, dv_z, w_x, w_z, T_x, T_y, dT_x, dT_y, modulation_depth, N, m = DY_MASS):
|
|
alpha_x = [(v_x[0]/x)**(2/3) for x in v_x]
|
|
dalpha_x = [alpha_x[i] * np.sqrt((dv_x[0]/v_x[0])**2 + (dv_x[i]/v_x[i])**2) for i in range(len(v_x))]
|
|
alpha_y = [(v_z[0]/y)**2 for y in v_z]
|
|
dalpha_y = [alpha_y[i] * np.sqrt((dv_z[0]/v_z[0])**2 + (dv_z[i]/v_z[i])**2) for i in range(len(v_z))]
|
|
|
|
avg_alpha = [(g + h) / 2 for g, h in zip(alpha_x, alpha_y)]
|
|
new_aspect_ratio = (w_x * avg_alpha) / w_z
|
|
|
|
avg_T = [(g + h) / 2 for g, h in zip(T_x, T_y)]
|
|
avg_dT = [0.5 * np.sqrt(g**2 + h**2) for g, h in zip(dT_x, dT_y)]
|
|
|
|
pd = np.zeros(len(modulation_depth))
|
|
dpd = np.zeros(len(modulation_depth))
|
|
|
|
for i in range(len(modulation_depth)):
|
|
particle_density = (N * (2 * np.pi)**3 * (v_x[i] * v_y[i] * v_z[i]) * (m / (2 * np.pi * ac.k_B * avg_T[i]))**(3/2)).decompose()
|
|
pd[i] = particle_density.value
|
|
dpd[i] = (((N * (2 * np.pi)**3 * (m / (2 * np.pi * ac.k_B * avg_T[i]))**(3/2)) * ((dv_x[i] * v_y[i] * v_z[i]) + (v_x[i] * dv_y[i] * v_z[i]) + (v_x[i] * v_y[i] * dv_z[i]) - (1.5*(v_x[i] * v_y[i] * v_z[i])*(avg_dT[i]/avg_T[i])))).decompose()).value
|
|
|
|
pd = pd*particle_density.unit
|
|
dpd = dpd*particle_density.unit
|
|
|
|
return pd, dpd, avg_T, avg_dT, new_aspect_ratio
|
|
|
|
def thermaldeBroglieWavelength(T, m = DY_MASS):
|
|
return np.sqrt((2*np.pi*ac.hbar**2)/(m*ac.k_B*T))
|
|
|
|
def scatteringLength(B, FR_choice = 1, ABKG_choice = 1):
|
|
# Dy 164 a_s versus B in 0 to 8G range
|
|
# should match SupMat of PhysRevX.9.021012, fig S5 and descrption
|
|
# https://journals.aps.org/prx/supplemental/10.1103/PhysRevX.9.021012/Resubmission_Suppmat.pdf
|
|
|
|
if FR_choice == 1: # new values
|
|
|
|
if ABKG_choice == 1:
|
|
a_bkg = 85.5 * ac.a0
|
|
elif ABKG_choice == 2:
|
|
a_bkg = 93.5 * ac.a0
|
|
elif ABKG_choice == 3:
|
|
a_bkg = 77.5 * ac.a0
|
|
|
|
#FR resonances
|
|
#[B11 B12 B2 B3 B4 B51 B52 B53 B6 B71 B72 B81 B82 B83 B9]
|
|
resonanceB = [1.295, 1.306, 2.174, 2.336, 2.591, 2.74, 2.803, 2.78, 3.357, 4.949, 5.083, 7.172, 7.204, 7.134, 76.9] * u.G #resonance position
|
|
#[wB11 wB12 wB2 wB3 wB4 wB51 wB52 wB53 wB6 wB71 wB72 wB81 wB82 wB83 wB9]
|
|
resonancewB = [0.009, 0.010, 0.0005, 0.0005, 0.001, 0.0005, 0.021, 0.015, 0.043, 0.0005, 0.130, 0.024, 0.0005, 0.036, 3.1] * u.G #resonance width
|
|
|
|
else: # old values
|
|
|
|
if ABKG_choice == 1:
|
|
a_bkg = 87.2 * ac.a0
|
|
elif ABKG_choice == 2:
|
|
a_bkg = 95.2 * ac.a0
|
|
elif ABKG_choice == 3:
|
|
a_bkg = 79.2 * ac.a0
|
|
|
|
#FR resonances
|
|
#[B1 B2 B3 B4 B5 B6 B7 B8]
|
|
resonanceB = [1.298, 2.802, 3.370, 5.092, 7.154, 2.592, 2.338, 2.177] * u.G #resonance position
|
|
#[wB1 wB2 wB3 wB4 wB5 wB6 wB7 wB8]
|
|
resonancewB = [0.018, 0.047, 0.048, 0.145, 0.020, 0.008, 0.001, 0.001] * u.G #resonance width
|
|
|
|
#Get scattering length
|
|
np.seterr(divide='ignore')
|
|
a_s = a_bkg * np.prod([(1 - resonancewB[j] / (B - resonanceB[j])) for j in range(len(resonanceB))])
|
|
return a_s, a_bkg
|
|
|
|
def dipolarLength(mu = DY_DIPOLE_MOMENT, m = DY_MASS):
|
|
return (m * ac.mu0 * mu**2) / (12 * np.pi * ac.hbar**2)
|
|
|
|
def scatteringCrossSection(B):
|
|
return 8 * np.pi * scatteringLength(B)[0]**2 + ((32*np.pi)/45) * dipolarLength()**2
|
|
|
|
def calculateElasticCollisionRate(w_x, w_z, Power, N, T, B): #For a 3D Harmonic Trap
|
|
return (particleDensity(w_x, w_z, Power, N, T) * scatteringCrossSection(B) * meanThermalVelocity(T) / (2 * np.sqrt(2))).decompose()
|
|
|
|
def calculatePSD(w_x, w_z, Power, N, T):
|
|
return (particleDensity(w_x, w_z, Power, N, T) * thermaldeBroglieWavelength(T)**3).decompose()
|
|
|
|
def convert_modulation_depth_to_alpha(modulation_depth):
|
|
fin_mod_dep = [0, 0.5, 0.3, 0.7, 0.9, 0.8, 1.0, 0.6, 0.4, 0.2, 0.1]
|
|
fx = [3.135, 0.28, 0.690, 0.152, 0.102, 0.127, 0.099, 0.205, 0.404, 1.441, 2.813]
|
|
dfx = [0.016, 0.006, 0.005, 0.006, 0.003, 0.002, 0.002,0.002, 0.003, 0.006, 0.024]
|
|
fz = [2.746, 1.278, 1.719, 1.058, 0.923, 0.994, 0.911, 1.157, 1.446, 2.191, 2.643]
|
|
dfz = [0.014, 0.007, 0.009, 0.007, 0.005, 0.004, 0.004, 0.005, 0.007, 0.009, 0.033]
|
|
|
|
alpha_x = [(fx[0]/x)**(2/3) for x in fx]
|
|
dalpha_x = [alpha_x[i] * np.sqrt((dfx[0]/fx[0])**2 + (dfx[i]/fx[i])**2) for i in range(len(fx))]
|
|
alpha_z = [(fz[0]/z)**2 for z in fz]
|
|
dalpha_z = [alpha_z[i] * np.sqrt((dfz[0]/fz[0])**2 + (dfz[i]/fz[i])**2) for i in range(len(fz))]
|
|
|
|
avg_alpha = [(g + h) / 2 for g, h in zip(alpha_x, alpha_z)]
|
|
sorted_fin_mod_dep, sorted_avg_alpha = zip(*sorted(zip(fin_mod_dep, avg_alpha)))
|
|
|
|
f = interpolate.interp1d(sorted_fin_mod_dep, sorted_avg_alpha)
|
|
|
|
return f(modulation_depth), fin_mod_dep, alpha_x, alpha_z, dalpha_x, dalpha_z
|
|
|
|
def convert_modulation_depth_to_temperature(modulation_depth):
|
|
fin_mod_dep = [1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.9, 0.7, 0.5, 0.3, 0.1]
|
|
T_x = [22.1, 27.9, 31.7, 42.2, 98.8, 145.8, 27.9, 33.8, 42.4, 61.9, 136.1]
|
|
dT_x = [1.7, 2.6, 2.4, 3.7, 1.1, 0.6, 2.2, 3.2, 1.7, 2.2, 1.2]
|
|
T_y = [13.13, 14.75, 18.44, 26.31, 52.55, 92.9, 13.54, 16.11, 21.15, 35.81, 85.8]
|
|
dT_y = [0.05, 0.05, 0.07, 0.16, 0.28, 0.7, 0.04, 0.07, 0.10, 0.21, 0.8]
|
|
|
|
avg_T = [(g + h) / 2 for g, h in zip(T_x, T_y)]
|
|
sorted_fin_mod_dep, sorted_avg_T = zip(*sorted(zip(fin_mod_dep, avg_T)))
|
|
|
|
f = interpolate.interp1d(sorted_fin_mod_dep, sorted_avg_T)
|
|
|
|
return f(modulation_depth), fin_mod_dep, T_x, T_y, dT_x, dT_y
|
|
|
|
#####################################################################
|
|
# COMPUTE/EXTRACT TRAP POTENTIAL AND PARAMETERS #
|
|
#####################################################################
|
|
|
|
def trap_depth(w_1, w_2, P, alpha = DY_POLARIZABILITY):
|
|
return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
|
|
def calculateTrapFrequency(w_x, w_z, Power, dir = 'x', m = DY_MASS):
|
|
TrapDepth = trap_depth(w_x, w_z, Power)
|
|
TrapFrequency = np.nan
|
|
if dir == 'x':
|
|
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_x**2))).decompose()
|
|
elif dir == 'y':
|
|
zReff = np.sqrt(2) * z_R(w_x, 1.064*u.um) * z_R(w_z, 1.064*u.um) / np.sqrt(z_R(w_x, 1.064*u.um)**2 + z_R(w_z, 1.064*u.um)**2)
|
|
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(2 * TrapDepth/ (m*zReff**2))).decompose()
|
|
elif dir == 'z':
|
|
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth/ (m*w_z**2))).decompose()
|
|
return round(TrapFrequency.value, 2)*u.Hz
|
|
|
|
def calculateCrossedBeamTrapFrequency(delta, Waists, Powers, dir = 'x', m = DY_MASS, wavelength=1.064*u.um):
|
|
|
|
TrapDepth_1 = trap_depth(Waists[0][0], Waists[1][0], Powers[0])
|
|
TrapDepth_2 = trap_depth(Waists[0][1], Waists[1][1], Powers[1])
|
|
|
|
w_x1 = Waists[0][0]
|
|
w_z1 = Waists[1][0]
|
|
|
|
w_y2 = Waists[0][1]
|
|
w_z2 = Waists[1][1]
|
|
|
|
zReff_1 = np.sqrt(2) * z_R(w_x1, wavelength) * z_R(w_z1, wavelength) / np.sqrt(z_R(w_x1, wavelength)**2 + z_R(w_z1, wavelength)**2)
|
|
zReff_2 = np.sqrt(2) * z_R(w_y2, wavelength) * z_R(w_z2, wavelength) / np.sqrt(z_R(w_y2, wavelength)**2 + z_R(w_z2, wavelength)**2)
|
|
|
|
wy2alpha = np.sqrt(((np.cos(np.radians(90 - delta)) / w_y2)**2 + (np.sin(np.radians(90 - delta)) / (2 * zReff_2))**2)**(-1))
|
|
zR2alpha = np.sqrt(((np.sin(np.radians(90 - delta)) / w_y2)**2 + (np.cos(np.radians(90 - delta)) / (2 * zReff_2))**2)**(-1))
|
|
|
|
TrapFrequency = np.nan
|
|
if dir == 'x':
|
|
v_1 = (1/(2 * np.pi)) * np.sqrt(4/m * (TrapDepth_1 / w_x1**2))
|
|
v_2 = (1/(2 * np.pi)) * np.sqrt(4/m * (TrapDepth_2 / zR2alpha**2))
|
|
TrapFrequency = (np.sqrt(v_1**2 + v_2**2)).decompose()
|
|
elif dir == 'y':
|
|
v_1 = (1/(2 * np.pi)) * np.sqrt(1/m * (2 * TrapDepth_1/ zReff_1**2))
|
|
v_2 = (1/(2 * np.pi)) * np.sqrt(1/m * (4 * TrapDepth_2/ wy2alpha**2))
|
|
TrapFrequency = (np.sqrt(v_1**2 + v_2**2)).decompose()
|
|
elif dir == 'z':
|
|
v_1 = (1/(2 * np.pi)) * np.sqrt(4/m * (TrapDepth_1 / w_z1**2))
|
|
v_2 = (1/(2 * np.pi)) * np.sqrt(4/m * (TrapDepth_2 / w_z2**2))
|
|
TrapFrequency = (np.sqrt(v_1**2 + v_2**2)).decompose()
|
|
|
|
return round(TrapFrequency.value, 2)*u.Hz
|
|
|
|
def extractTrapFrequency(Positions, TrappingPotential, axis):
|
|
tmp_pos = Positions[axis, :]
|
|
tmp_pot = TrappingPotential[axis]
|
|
center_idx = np.argmin(tmp_pot)
|
|
lb = int(round(center_idx - len(tmp_pot)/200, 1))
|
|
ub = int(round(center_idx + len(tmp_pot)/200, 1))
|
|
xdata = tmp_pos[lb:ub]
|
|
Potential = tmp_pot[lb:ub]
|
|
p0 = [1e3, tmp_pos[center_idx].value, -100]
|
|
try:
|
|
popt, pcov = curve_fit(harmonic_potential, xdata, Potential, p0)
|
|
v = popt[0]
|
|
dv = pcov[0][0]**0.5
|
|
except:
|
|
popt = np.nan
|
|
pcov = np.nan
|
|
v = np.nan
|
|
dv = np.nan
|
|
|
|
return v, dv, popt, pcov
|
|
|
|
def computeTrapPotential(w_x, w_z, Power, options):
|
|
|
|
axis = options['axis']
|
|
extent = options['extent']
|
|
gravity = options['gravity']
|
|
astigmatism = options['astigmatism']
|
|
modulation = options['modulation']
|
|
crossed = options['crossed']
|
|
|
|
if modulation:
|
|
aspect_ratio = options['aspect_ratio']
|
|
current_ar = w_x/w_z
|
|
w_x = w_x * (aspect_ratio / current_ar)
|
|
|
|
TrappingPotential = []
|
|
TrapDepth = trap_depth(w_x, w_z, Power)
|
|
IdealTrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK)
|
|
|
|
projection_axis = np.array([0, 1, 0]) # default
|
|
|
|
if axis == 0:
|
|
projection_axis = np.array([1, 0, 0]) # radial direction (X-axis)
|
|
|
|
elif axis == 1:
|
|
projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis)
|
|
|
|
elif axis == 2:
|
|
projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis)
|
|
|
|
else:
|
|
projection_axis = np.array([1, 1, 1]) # vertical direction (Z-axis)
|
|
|
|
x_Positions = np.arange(-extent, extent, 0.05)*u.um
|
|
y_Positions = np.arange(-extent, extent, 0.05)*u.um
|
|
z_Positions = np.arange(-extent, extent, 0.05)*u.um
|
|
Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis]
|
|
|
|
if not crossed:
|
|
IdealTrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power)
|
|
IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis])
|
|
IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
if gravity and not astigmatism:
|
|
# Influence of Gravity
|
|
m = DY_MASS
|
|
gravity_axis = np.array([0, 0, 1])
|
|
tilt_gravity = options['tilt_gravity']
|
|
theta = options['theta']
|
|
tilt_axis = options['tilt_axis']
|
|
if tilt_gravity:
|
|
R = rotation_matrix(tilt_axis, np.radians(theta))
|
|
gravity_axis = np.dot(R, gravity_axis)
|
|
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
|
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power)
|
|
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
elif not gravity and astigmatism:
|
|
# Influence of Astigmatism
|
|
foci_disp_single = options['foci_disp_single']
|
|
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = foci_disp_single)
|
|
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis])
|
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
elif gravity and astigmatism:
|
|
# Influence of Gravity and Astigmatism
|
|
m = DY_MASS
|
|
gravity_axis = np.array([0, 0, 1])
|
|
tilt_gravity = options['tilt_gravity']
|
|
theta = options['theta']
|
|
tilt_axis = options['tilt_axis']
|
|
foci_disp_single = options['foci_disp_single']
|
|
if tilt_gravity:
|
|
R = rotation_matrix(tilt_axis, np.radians(theta))
|
|
gravity_axis = np.dot(R, gravity_axis)
|
|
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
|
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = foci_disp_single)
|
|
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
else:
|
|
TrappingPotential = IdealTrappingPotential
|
|
|
|
infls = np.where(np.diff(np.sign(np.gradient(np.gradient(TrappingPotential[axis].value)))))[0]
|
|
|
|
try:
|
|
if TrappingPotential[axis][0] > TrappingPotential[axis][-1]:
|
|
EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][infls[1]:-1]) - min(TrappingPotential[axis][infls[0]:infls[1]])
|
|
elif TrappingPotential[axis][0] < TrappingPotential[axis][-1]:
|
|
EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][0:infls[0]]) - min(TrappingPotential[axis][infls[0]:infls[1]])
|
|
else:
|
|
EffectiveTrapDepthInKelvin = IdealTrapDepthInKelvin
|
|
except:
|
|
EffectiveTrapDepthInKelvin = np.nan
|
|
|
|
TrapDepthsInKelvin = [IdealTrapDepthInKelvin, EffectiveTrapDepthInKelvin]
|
|
|
|
v_x = calculateTrapFrequency(w_x, w_z, Power, dir = 'x')
|
|
v_y = calculateTrapFrequency(w_x, w_z, Power, dir = 'y')
|
|
v_z = calculateTrapFrequency(w_x, w_z, Power, dir = 'z')
|
|
CalculatedTrapFrequencies = [v_x, v_y, v_z]
|
|
|
|
v, dv, popt, pcov = extractTrapFrequency(Positions, IdealTrappingPotential, axis)
|
|
if np.isinf(v):
|
|
v = np.nan
|
|
if np.isinf(dv):
|
|
dv = np.nan
|
|
|
|
IdealTrapFrequency = [v, dv]
|
|
|
|
if options['extract_trap_frequencies']:
|
|
v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, axis)
|
|
if np.isinf(v):
|
|
v = np.nan
|
|
if np.isinf(dv):
|
|
dv = np.nan
|
|
TrapFrequency = [v, dv]
|
|
ExtractedTrapFrequencies = [IdealTrapFrequency, TrapFrequency]
|
|
else:
|
|
ExtractedTrapFrequencies = [IdealTrapFrequency]
|
|
|
|
return Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies
|
|
|
|
else:
|
|
waists = np.vstack((np.asarray([w_x[0].value, w_z[0].value])*u.um, np.asarray([w_x[1].value, w_z[1].value])*u.um))
|
|
IdealTrappingPotential = crossed_beam_potential(Positions, waists, Power, options)
|
|
IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis])
|
|
IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
if gravity and not astigmatism:
|
|
# Influence of Gravity
|
|
m = DY_MASS
|
|
gravity_axis = np.array([0, 0, 1])
|
|
tilt_gravity = options['tilt_gravity']
|
|
theta = options['theta']
|
|
tilt_axis = options['tilt_axis']
|
|
if tilt_gravity:
|
|
R = rotation_matrix(tilt_axis, np.radians(theta))
|
|
gravity_axis = np.dot(R, gravity_axis)
|
|
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
|
TrappingPotential = crossed_beam_potential(Positions, waists, Power, options)
|
|
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
elif not gravity and astigmatism:
|
|
# Influence of Astigmatism
|
|
TrappingPotential = astigmatic_crossed_beam_potential(Positions, waists, Power, options)
|
|
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis])
|
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
elif gravity and astigmatism:
|
|
# Influence of Gravity and Astigmatism
|
|
m = DY_MASS
|
|
gravity_axis = np.array([0, 0, 1])
|
|
tilt_gravity = options['tilt_gravity']
|
|
theta = options['theta']
|
|
tilt_axis = options['tilt_axis']
|
|
if tilt_gravity:
|
|
R = rotation_matrix(tilt_axis, np.radians(theta))
|
|
gravity_axis = np.dot(R, gravity_axis)
|
|
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
|
TrappingPotential = astigmatic_crossed_beam_potential(Positions, waists, Power, options)
|
|
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
else:
|
|
TrappingPotential = IdealTrappingPotential
|
|
|
|
infls = np.where(np.diff(np.sign(np.gradient(np.gradient(TrappingPotential[axis].value)))))[0]
|
|
|
|
try:
|
|
if TrappingPotential[axis][0] > TrappingPotential[axis][-1]:
|
|
EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][infls[1]:-1]) - min(TrappingPotential[axis][infls[0]:infls[1]])
|
|
elif TrappingPotential[axis][0] < TrappingPotential[axis][-1]:
|
|
EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][0:infls[0]]) - min(TrappingPotential[axis][infls[0]:infls[1]])
|
|
else:
|
|
EffectiveTrapDepthInKelvin = IdealTrapDepthInKelvin
|
|
except:
|
|
EffectiveTrapDepthInKelvin = np.nan
|
|
|
|
TrapDepthsInKelvin = [IdealTrapDepthInKelvin, EffectiveTrapDepthInKelvin]
|
|
|
|
v_x = calculateCrossedBeamTrapFrequency(options['delta'], [w_x, w_z], Power, dir = 'x')
|
|
v_y = calculateCrossedBeamTrapFrequency(options['delta'], [w_x, w_z], Power, dir = 'y')
|
|
v_z = calculateCrossedBeamTrapFrequency(options['delta'], [w_x, w_z], Power, dir = 'z')
|
|
CalculatedTrapFrequencies = [v_x, v_y, v_z]
|
|
|
|
v, dv, popt, pcov = extractTrapFrequency(Positions, IdealTrappingPotential, axis)
|
|
if np.isinf(v):
|
|
v = np.nan
|
|
if np.isinf(dv):
|
|
dv = np.nan
|
|
|
|
IdealTrapFrequency = [v, dv]
|
|
|
|
if options['extract_trap_frequencies']:
|
|
v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, axis)
|
|
if np.isinf(v):
|
|
v = np.nan
|
|
if np.isinf(dv):
|
|
dv = np.nan
|
|
TrapFrequency = [v, dv]
|
|
ExtractedTrapFrequencies = [IdealTrapFrequency, TrapFrequency]
|
|
else:
|
|
ExtractedTrapFrequencies = [IdealTrapFrequency]
|
|
|
|
return Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies
|
|
|
|
def extractWaist(Positions, TrappingPotential):
|
|
tmp_pos = Positions.value
|
|
tmp_pot = TrappingPotential.value
|
|
center_idx = np.argmin(tmp_pot)
|
|
|
|
TrapMinimum = tmp_pot[center_idx]
|
|
TrapCenter = tmp_pos[center_idx]
|
|
|
|
lb = int(round(center_idx - len(tmp_pot)/30, 1))
|
|
ub = int(round(center_idx + len(tmp_pot)/30, 1))
|
|
xdata = tmp_pos[lb:ub]
|
|
Potential = tmp_pot[lb:ub]
|
|
|
|
p0=[TrapMinimum, 30, TrapCenter, 0]
|
|
popt, pcov = curve_fit(gaussian_potential, xdata, Potential, p0)
|
|
return popt, pcov
|
|
|
|
def computeIntensityProfileAndPotentials(Power, waists, wavelength, options, alpha = DY_POLARIZABILITY):
|
|
w_x = waists[0]
|
|
w_z = waists[1]
|
|
extent = options['extent']
|
|
modulation = options['modulation']
|
|
mod_func = options['modulation_function']
|
|
|
|
if not modulation:
|
|
extent = 50
|
|
x_Positions = np.arange(-extent, extent, 1)*u.um
|
|
y_Positions = np.arange(-extent, extent, 1)*u.um
|
|
z_Positions = np.arange(-extent, extent, 1)*u.um
|
|
|
|
idx = np.where(y_Positions==0)[0][0]
|
|
|
|
wavelength = 1.064*u.um
|
|
|
|
xm,ym,zm = np.meshgrid(x_Positions, y_Positions, z_Positions, sparse=True, indexing='ij')
|
|
|
|
## Single Gaussian Beam
|
|
A = 2*Power/(np.pi*w(ym, w_x, wavelength)*w(ym, w_z, wavelength))
|
|
intensity_profile = A * np.exp(-2 * ((xm/w(ym, w_x, wavelength))**2 + (zm/w(ym, w_z, wavelength))**2))
|
|
I = intensity_profile[:, idx, :].to(u.MW/(u.cm*u.cm))
|
|
|
|
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
U = - U_tilde * I
|
|
U = (U/ac.k_B).to(u.uK)
|
|
|
|
return [x_Positions, z_Positions], [w_x.value, 0, w_z.value, 0], I, U, [0, 0, 0, 0]
|
|
|
|
else:
|
|
mod_amp = options['modulation_amplitude']
|
|
x_Positions = np.arange(-extent, extent, 1)*u.um
|
|
y_Positions = np.arange(-extent, extent, 1)*u.um
|
|
z_Positions = np.arange(-extent, extent, 1)*u.um
|
|
|
|
mod_amp = mod_amp * w_x
|
|
n_points = len(x_Positions)
|
|
dx, xmod_Positions = modulation_function(mod_amp, n_points, func = mod_func)
|
|
|
|
idx = np.where(y_Positions==0)[0][0]
|
|
|
|
xm,ym,zm,xmodm = np.meshgrid(x_Positions, y_Positions, z_Positions, xmod_Positions, sparse=True, indexing='ij')
|
|
|
|
## Single Modulated Gaussian Beam
|
|
A = 2*Power/(np.pi*w(y_Positions[idx] , w_x, wavelength)*w(y_Positions[idx], w_z, wavelength))
|
|
intensity_profile = A * 1/(2*mod_amp) * np.trapz(np.exp(-2 * (((xmodm - xm)/w(ym, w_x, wavelength))**2 + (zm/w(ym, w_z, wavelength))**2)), dx = dx, axis = -1)
|
|
I = intensity_profile[:, idx, :].to(u.MW/(u.cm*u.cm))
|
|
|
|
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
U = - U_tilde * I
|
|
U = (U/ac.k_B).to(u.uK)
|
|
|
|
poptx, pcovx = extractWaist(x_Positions, U[:, np.where(z_Positions==0)[0][0]])
|
|
poptz, pcovz = extractWaist(z_Positions, U[np.where(x_Positions==0)[0][0], :])
|
|
|
|
extracted_waist_x = poptx[1]
|
|
dextracted_waist_x = pcovx[1][1]**0.5
|
|
extracted_waist_z = poptz[1]
|
|
dextracted_waist_z = pcovz[1][1]**0.5
|
|
|
|
return [x_Positions, z_Positions], [extracted_waist_x, dextracted_waist_x, extracted_waist_z, dextracted_waist_z], I, U, [poptx, pcovx, poptz, pcovz]
|