Calculations/Dipolar-Gas-Simulator/+Scripts/run_on_cluster.m

96 lines
4.1 KiB
Matlab

%{
theta = 0;
phi = 0;
% - SSD: N = 1E5, as = 86ao
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 1E5;
OptionsStruct.DipolarPolarAngle = deg2rad(theta);
OptionsStruct.DipolarAzimuthAngle = deg2rad(phi);
OptionsStruct.ScatteringLength = 86;
% AspectRatio = 2.0;
% HorizontalTrapFrequency = 125;
% VerticalTrapFrequency = AspectRatio * HorizontalTrapFrequency;
% OptionsStruct.TrapFrequencies = [HorizontalTrapFrequency, HorizontalTrapFrequency, VerticalTrapFrequency];
OptionsStruct.TrapFrequencies = [150, 150, 300];
OptionsStruct.TrapPotentialType = 'Harmonic';
OptionsStruct.NumberOfGridPoints = [128, 128, 64];
OptionsStruct.Dimensions = [18, 18, 18];
OptionsStruct.UseApproximationForLHY = true;
OptionsStruct.IncludeDDICutOff = true;
OptionsStruct.CutoffType = 'Cylindrical';
OptionsStruct.SimulationMode = 'ImaginaryTimeEvolution'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution'
OptionsStruct.TimeStepSize = 1E-3; % in s
OptionsStruct.MinimumTimeStepSize = 2E-6; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-08;
OptionsStruct.NoiseScaleFactor = 0.01;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 0;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_3D/TiltedDipoles0';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
sim = Simulator.DipolarGas(options{:});
pot = Simulator.Potentials(options{:});
sim.Potential = pot.trap();
%-% Run Simulation %-%
[Params, Transf, psi, V, VDk] = sim.run();
%}
%% - Aspect Ratio: 2.5
theta = 45;
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 1E5;
OptionsStruct.DipolarPolarAngle = deg2rad(theta);
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 85;
AspectRatio = 2.5;
HorizontalTrapFrequency = 125;
VerticalTrapFrequency = AspectRatio * HorizontalTrapFrequency;
OptionsStruct.TrapFrequencies = [HorizontalTrapFrequency, HorizontalTrapFrequency, VerticalTrapFrequency];
OptionsStruct.TrapPotentialType = 'Harmonic';
OptionsStruct.NumberOfGridPoints = [128, 128, 64];
OptionsStruct.Dimensions = [12, 12, 12];
OptionsStruct.UseApproximationForLHY = true;
OptionsStruct.IncludeDDICutOff = true;
OptionsStruct.CutoffType = 'CustomCylindrical';
OptionsStruct.CustomCylindricalCutOffRadius = 4.5;
OptionsStruct.CustomCylindricalCutOffHeight = 4.5;
OptionsStruct.SimulationMode = 'ImaginaryTimeEvolution'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution'
OptionsStruct.TimeStepSize = 1E-3; % in s
OptionsStruct.MinimumTimeStepSize = 2E-6; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.01;
OptionsStruct.PlotLive = false;
OptionsStruct.JobNumber = 2;
OptionsStruct.RunOnGPU = true;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = sprintf('./Results/Data_3D/TiltedDipoles%s', strrep(num2str(round(rad2deg(OptionsStruct.DipolarPolarAngle),2)), '.', '_'));
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
sim = Simulator.DipolarGas(options{:});
pot = Simulator.Potentials(options{:});
sim.Potential = pot.trap();
%-% Run Simulation %-%
[Params, Transf, psi, V, VDk] = sim.run();