105 lines
3.3 KiB
Matlab
105 lines
3.3 KiB
Matlab
function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V)
|
|
|
|
format long;
|
|
|
|
% Define the function handle
|
|
f = @(X) this.Calculator.calculateTotalEnergy(X, Params, Transf, VDk, V)/Params.N;
|
|
|
|
% Convergence Criteria:
|
|
Epsilon = 1E-5;
|
|
|
|
% Gradient Calculation
|
|
J = compute_gradient(psi, Params, Transf, VDk, V); % Gradient at initial point
|
|
S = -J; % Initial search direction
|
|
|
|
% Iteration Counter:
|
|
i = 1;
|
|
|
|
% Minimization
|
|
while norm(S(:)) > Epsilon % Halting Criterion
|
|
% Step Size Optimization (Line Search)
|
|
alpha = optimize_step_size(f, psi, S, Params, Transf, VDk, V);
|
|
|
|
% Update the solution
|
|
x_o_new = psi + alpha * S;
|
|
|
|
% Update the gradient and search direction
|
|
J_old = J;
|
|
J = compute_gradient(x_o_new, Params, Transf, VDk, V);
|
|
S = update_search_direction(S, J, J_old);
|
|
|
|
% Update for next iteration
|
|
psi = x_o_new;
|
|
Norm = sum(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
|
|
psi = sqrt(Params.N)*psi/sqrt(Norm);
|
|
i = i + 1;
|
|
end
|
|
|
|
disp('Minimum found!');
|
|
fprintf('Number of Iterations for Convergence: %d\n\n', i);
|
|
|
|
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
|
|
|
|
disp('Saving data...');
|
|
save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Transf','Params','VDk','V');
|
|
disp('Save complete!');
|
|
|
|
end
|
|
|
|
%% Helper functions
|
|
% Numerical Gradient Calculation using the finite differences method
|
|
function J = compute_gradient(psi, Params, Transf, VDk, V)
|
|
|
|
% Kinetic energy
|
|
KEop = 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
|
|
H_o = KEop + V;
|
|
|
|
%Contact interactions
|
|
Hint = Params.gs*abs(psi).^2;
|
|
|
|
% DDIs
|
|
frho = fftn(abs(psi).^2);
|
|
Phi = real(ifftn(frho.*VDk));
|
|
Hddi = Params.gdd*Phi;
|
|
|
|
%Quantum fluctuations
|
|
Hqf = Params.gammaQF*abs(psi).^3;
|
|
|
|
H = H_o + Hint + Hddi + Hqf;
|
|
|
|
J = H.*psi;
|
|
|
|
end
|
|
|
|
% Line Search (Step Size Optimization)
|
|
function alpha = optimize_step_size(f, X, S, Params, Transf, VDk, V)
|
|
alpha = 1; % Initial step size
|
|
rho = 0.5; % Step size reduction factor
|
|
c = 1E-4; % Armijo condition constant
|
|
max_iter = 100; % Max iterations for backtracking
|
|
tol = 1E-8; % Tolerance for stopping
|
|
|
|
grad = compute_gradient(X, Params, Transf, VDk, V); % Compute gradient once
|
|
f_X = f(X); % Evaluate f(X) once
|
|
|
|
for k = 1:max_iter
|
|
% Evaluate Armijo condition with precomputed f(X) and grad
|
|
if f(X + alpha * S) <= f_X + c * alpha * (S(:)' * grad(:))
|
|
break;
|
|
else
|
|
alpha = rho * alpha; % Reduce the step size
|
|
end
|
|
|
|
% Early stopping if step size becomes too small
|
|
if alpha < tol
|
|
break;
|
|
end
|
|
end
|
|
|
|
end
|
|
|
|
% Update Search Direction (Polak-Ribiere method)
|
|
function S_new = update_search_direction(S, J_new, J_old)
|
|
beta = (norm(J_new(:))^2) / (norm(J_old(:))^2);
|
|
S_new = -J_new + beta * S;
|
|
end |