Calculations/Dipolar-Gas-Simulator/+Scripts/run_on_cluster.m

167 lines
6.4 KiB
Matlab

%%
% To reproduce results from the Blair Blakie paper:
% (n*add^2, as/add)
% Critical point: (0.0978, 0.784); Triangular phase: (0.0959, 0.750); Stripe phase: (0.144, 0.765); Honeycomb phase: (0.192, 0.780)
% N = ((n*add^2)/Params.add^2) * (Params.Lx *1E-6)^2
% Critical point: N = 2.0427e+07; Triangular phase: N = 2.0030e+07; Stripe phase: N = 3.0077e+07; Honeycomb phase: N = 4.0102e+07 for dimensions fixed to 100
% as = ((as/add)*Params.add)/Params.a0
% Critical point: 102.5133; Triangular phase: 98.0676; Stripe phase: 100.0289; Honeycomb phase: 101.9903
%% - Create Variational2D and Calculator object with specified options
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 2.0030e+07;
OptionsStruct.DipolarPolarAngle = 0;
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 98.0676;
OptionsStruct.TrapFrequencies = [0, 0, 72.4];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [256, 256];
OptionsStruct.Dimensions = [100, 100];
OptionsStruct.TimeStepSize = 500E-6; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.05;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 5;
OptionsStruct.WidthLowerBound = 1;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = false;
OptionsStruct.JobNumber = 1;
OptionsStruct.RunOnGPU = true;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Data_TriangularPhase';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%% - Create Variational2D and Calculator object with specified options
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 3.0077e+07;
OptionsStruct.DipolarPolarAngle = 0;
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 100.0289;
OptionsStruct.TrapFrequencies = [0, 0, 72.4];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [256, 256];
OptionsStruct.Dimensions = [100, 100];
OptionsStruct.TimeStepSize = 500E-6; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.05;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 5;
OptionsStruct.WidthLowerBound = 1;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = false;
OptionsStruct.JobNumber = 2;
OptionsStruct.RunOnGPU = true;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Data_StripePhase';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%% - Create Variational2D and Calculator object with specified options
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 4.0102e+07;
OptionsStruct.DipolarPolarAngle = 0;
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 101.9903;
OptionsStruct.TrapFrequencies = [0, 0, 72.4];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [256, 256];
OptionsStruct.Dimensions = [100, 100];
OptionsStruct.TimeStepSize = 500E-6; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.05;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 5;
OptionsStruct.WidthLowerBound = 1;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = false;
OptionsStruct.JobNumber = 3;
OptionsStruct.RunOnGPU = true;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Data_HoneycombPhase';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%%
%{
% Solve BdG equations
% Load data
Data = load(sprintf(horzcat(solver.SaveDirectory, '/Run_%03i/psi_gs.mat'),solver.JobNumber),'psi','Transf','Params','VParams','V');
Transf = Data.Transf;
Params = Data.Params;
VParams = Data.VParams;
V = Data.V;
if isgpuarray(Data.psi)
psi = gather(Data.psi);
else
psi = Data.psi;
end
% == DDI potential == %
VDk = solver.Calculator.calculateVDkWithCutoff(Transf, Params, VParams.ell);
% == Chemical potential == %
muchem = solver.Calculator.calculateChemicalPotential(psi,Params,VParams,Transf,VDk,V);
[evals, modes] = BdGSolver2D.solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, Transf, muchem);
% Save the eigenvalues and eigenvectors to a .mat file
save(sprintf(strcat(solver.SaveDirectory, '/Run_%03i/bdg_eigen_data.mat'),solver.JobNumber), 'evals', 'modes', '-v7.3');
%}