Calculations/Estimations/DipolarDispersionAndRotonInstabilityBoundary/ExtractingKRoton.m

232 lines
11 KiB
Matlab

%% Physical constants
PlanckConstant = 6.62607015E-34;
PlanckConstantReduced = 6.62607015E-34/(2*pi);
FineStructureConstant = 7.2973525698E-3;
ElectronMass = 9.10938291E-31;
GravitationalConstant = 6.67384E-11;
ProtonMass = 1.672621777E-27;
AtomicMassUnit = 1.660539066E-27;
BohrRadius = 5.2917721067E-11;
BohrMagneton = 9.274009994E-24;
BoltzmannConstant = 1.38064852E-23;
StandardGravityAcceleration = 9.80665;
SpeedOfLight = 299792458;
StefanBoltzmannConstant = 5.670373E-8;
ElectronCharge = 1.602176634E-19;
VacuumPermeability = 1.25663706212E-6;
DielectricConstant = 8.8541878128E-12;
ElectronGyromagneticFactor = -2.00231930436153;
AvogadroConstant = 6.02214076E23;
ZeroKelvin = 273.15;
GravitationalAcceleration = 9.80553;
VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability);
HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius);
AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3
% Dy specific constants
Dy164Mass = 163.929174751*AtomicMassUnit;
Dy164IsotopicAbundance = 0.2826;
DyMagneticMoment = 9.93*BohrMagneton;
%% k_roton at the instability boundary for tilted dipoles
wz = 2 * pi * 500; % Trap frequency in the tight confinement direction
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
gdd = VacuumPermeability*DyMagneticMoment^2/3;
% nadd2s = 0.2:0.005:0.75;
% as_to_add = 0.4:0.002:0.5;
nadd2s = 0.05:0.005:0.25;
as_to_add = 0.50:0.001:0.80;
var_widths = zeros(length(as_to_add), length(nadd2s));
x0 = 5;
Aineq = [];
Bineq = [];
Aeq = [];
Beq = [];
lb = [1];
ub = [10];
nonlcon = [];
fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500);
for idx = 1:length(nadd2s)
for jdx = 1:length(as_to_add)
AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms
as = (as_to_add(jdx) * add); % Scattering length
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced);
sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts);
var_widths(jdx, idx) = sigma;
end
end
% ====================================================================================================================================================== %
theta = 0; % Polar angle of dipole moment
phi = 0; % Azimuthal angle of momentum vector
k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector
instability_boundary = zeros(length(as_to_add), length(nadd2s));
k_roton = zeros(length(as_to_add), length(nadd2s));
ScatteringLengths = zeros(length(as_to_add), 1);
AtomNumber = zeros(length(nadd2s), 1);
w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction
l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length
tsize = 10 * l0;
for idx = 1:length(nadd2s)
for jdx = 1:length(as_to_add)
AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms
AtomNumber(idx) = AtomNumberDensity*tsize^2;
as = (as_to_add(jdx) * add); % Scattering length
ScatteringLengths(jdx) = as/BohrRadius;
eps_dd = add/as; % Relative interaction strength
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
gdd = VacuumPermeability*DyMagneticMoment^2/3;
MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space
% == Quantum Fluctuations term == %
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2));
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
gQF = gamma5 * gammaQF;
% == Dispersion relation == %
DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2));
EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK);
instability_boundary(jdx, idx) = ~isreal(EpsilonK);
k_roton_indices = find(imag(EpsilonK) ~= 0);
if ~isempty(k_roton_indices)
k_roton(jdx, idx) = k(k_roton_indices(1));
else
k_roton(jdx, idx) = NaN;
end
end
end
%
k_roton_vals = (k_roton .* add);
%
figure(8)
clf
set(gcf,'Position',[50 50 950 750])
imagesc(AtomNumber*1E-5, ScatteringLengths, k_roton_vals); % Specify x and y data for axes
set(gca, 'YDir', 'normal'); % Correct the y-axis direction
cbar1 = colorbar;
cbar1.Label.Interpreter = 'latex';
% ylabel(cbar1,'$$','FontSize',16,'Rotation',270)
xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex');
ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex');
title('Roton instability boundary','fontsize',16,'interpreter','latex')
%
% Get the size of the matrix
k_roton_vals = flipud(k_roton_vals);
[rows, cols] = size(k_roton_vals);
first_nonnan_row = zeros(1, cols);
% Loop through each column
for col = 1:cols
nonnan_rows = find(~isnan(k_roton_vals(:, col)));
if ~isempty(nonnan_rows)
first_nonnan_row(col) = nonnan_rows(1);
else
first_nonnan_row(col) = NaN; % Use NaN to represent no non-zero elements in this column
end
end
% Create column indices (1 to number of columns)
column_indices = 1:cols;
%
% Use row and column indices to extract the first non-zero elements
k_roton_instability_boundary = arrayfun(@(r, c) k_roton_vals(r, c), first_nonnan_row(~isnan(first_nonnan_row)), column_indices(~isnan(first_nonnan_row)));
figure(9)
clf
set(gcf,'Position',[50 50 950 750])
xvals = AtomNumber*1E-5;
yvals = k_roton_instability_boundary;
plot(xvals', yvals,LineWidth=2.0)
xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex');
ylabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex')
title('$k_{roton}$ at the instability boundary','fontsize',16,'interpreter','latex')
grid on
%%
function [Transf] = setupSpace(Params)
Transf.Xmax = 0.5*Params.Lx;
Transf.Ymax = 0.5*Params.Ly;
Nx = Params.Nx;
Ny = Params.Ny;
% Fourier grids
x = linspace(-0.5*Params.Lx,0.5*Params.Lx-Params.Lx/Params.Nx,Params.Nx);
Kmax = pi*Params.Nx/Params.Lx;
kx = linspace(-Kmax,Kmax,Nx+1);
kx = kx(1:end-1);
dkx = kx(2)-kx(1);
kx = fftshift(kx);
y = linspace(-0.5*Params.Ly,0.5*Params.Ly-Params.Ly/Params.Ny,Params.Ny);
Kmax = pi*Params.Ny/Params.Ly;
ky = linspace(-Kmax,Kmax,Ny+1);
ky = ky(1:end-1);
dky = ky(2)-ky(1);
ky = fftshift(ky);
[Transf.X,Transf.Y] = ndgrid(x,y);
[Transf.KX,Transf.KY] = ndgrid(kx,ky);
Transf.x = x;
Transf.y = y;
Transf.kx = kx;
Transf.ky = ky;
Transf.dx = x(2)-x(1);
Transf.dy = y(2)-y(1);
Transf.dkx = dkx;
Transf.dky = dky;
end
function VDk = compute2DPotentialInMomentumSpace(Transf, Params, MeanWidth)
% == Calculating the DDI potential in Fourier space with appropriate cutoff == %
% Interaction in K space
QX = Transf.KX*MeanWidth/sqrt(2);
QY = Transf.KY*MeanWidth/sqrt(2);
Qsq = QX.^2 + QY.^2;
absQ = sqrt(Qsq);
QDsq = QX.^2*cos(Params.phi)^2 + QY.^2*sin(Params.phi)^2;
% Bare interaction
Fpar = -1 + 3*sqrt(pi)*QDsq.*erfcx(absQ)./absQ; % Scaled complementary error function erfcx(x) = e^(x^2) * erfc(x)
Fperp = 2 - 3*sqrt(pi).*absQ.*erfcx(absQ);
Fpar(absQ == 0) = -1;
% Full DDI
VDk = (Fpar*sin(Params.alpha)^2 + Fperp*cos(Params.alpha)^2);
end
function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi)
Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2)));
gamma4 = 1/(sqrt(2*pi) * MeanWidth);
Fka = (3 * cos(deg2rad(theta))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(theta))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(theta))^2));
Ukk = (gs + (gdd * Fka)) * gamma4;
end
function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced)
eps_dd = add/as; % Relative interaction strength
MeanWidth = x * lz;
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term
gamma4 = 1/(sqrt(2*pi) * MeanWidth);
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
gQF = gamma5 * gammaQF;
Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2)));
Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2));
ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz);
end