252 lines
12 KiB
Matlab
252 lines
12 KiB
Matlab
%% Physical constants
|
|
PlanckConstant = 6.62607015E-34;
|
|
PlanckConstantReduced = 6.62607015E-34/(2*pi);
|
|
FineStructureConstant = 7.2973525698E-3;
|
|
ElectronMass = 9.10938291E-31;
|
|
GravitationalConstant = 6.67384E-11;
|
|
ProtonMass = 1.672621777E-27;
|
|
AtomicMassUnit = 1.660539066E-27;
|
|
BohrRadius = 5.2917721067E-11;
|
|
BohrMagneton = 9.274009994E-24;
|
|
BoltzmannConstant = 1.38064852E-23;
|
|
StandardGravityAcceleration = 9.80665;
|
|
SpeedOfLight = 299792458;
|
|
StefanBoltzmannConstant = 5.670373E-8;
|
|
ElectronCharge = 1.602176634E-19;
|
|
VacuumPermeability = 1.25663706212E-6;
|
|
DielectricConstant = 8.8541878128E-12;
|
|
ElectronGyromagneticFactor = -2.00231930436153;
|
|
AvogadroConstant = 6.02214076E23;
|
|
ZeroKelvin = 273.15;
|
|
GravitationalAcceleration = 9.80553;
|
|
VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability);
|
|
HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius);
|
|
AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3
|
|
|
|
% Dy specific constants
|
|
Dy164Mass = 163.929174751*AtomicMassUnit;
|
|
Dy164IsotopicAbundance = 0.2826;
|
|
DyMagneticMoment = 9.93*BohrMagneton;
|
|
|
|
%% 2-D DDI Potential in k-space, with Gaussian ansatz width determined by constrained minimization
|
|
% With user-defined values of interaction, density and tilt
|
|
|
|
% w0 = 2*pi*61.6316; % Angular frequency unit [s^-1]
|
|
% l0 = sqrt(PlanckConstantReduced/(Dy164Mass*w0));
|
|
% % Defining a harmonic oscillator length - heredue to the choice of w0, l0
|
|
% is 1 micrometer
|
|
|
|
wz = 2 * pi * 300; % Trap frequency in the tight confinement direction
|
|
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
|
|
|
|
% Number of grid points in each direction
|
|
Params.Nx = 128;
|
|
Params.Ny = 128;
|
|
Params.Lx = 150*1e-6;
|
|
Params.Ly = 150*1e-6;
|
|
[Transf] = setupSpace(Params);
|
|
|
|
nadd2s = 0.110; % Number density * add^2
|
|
as_to_add = 0.782; % 1/edd
|
|
Params.theta = 57; % Polar angle of dipole moment
|
|
Params.eta = 0; % Azimuthal angle of dipole moment
|
|
|
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
|
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
|
|
|
x0 = 5;
|
|
Aineq = [];
|
|
Bineq = [];
|
|
Aeq = [];
|
|
Beq = [];
|
|
lb = [1];
|
|
ub = [10];
|
|
nonlcon = [];
|
|
fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500);
|
|
|
|
AtomNumberDensity = nadd2s / add^2; % Number density of atoms
|
|
as = as_to_add * add; % Scattering length
|
|
eps_dd = add/as; % Relative interaction strength
|
|
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
|
TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced);
|
|
sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts);
|
|
|
|
MeanWidth = sigma * lz;
|
|
|
|
% == 2-D DDI Potential in k-space == %
|
|
VDk = compute2DPotentialInMomentumSpace(Transf, Params, MeanWidth);
|
|
VDk_fftshifted = fftshift(VDk);
|
|
|
|
figure(11)
|
|
clf
|
|
set(gcf,'Position',[50 50 950 750])
|
|
imagesc(fftshift(Transf.kx)*1e-6, fftshift(Transf.ky)*1e-6, VDk_fftshifted); % Specify x and y data for axes
|
|
set(gca, 'YDir', 'normal'); % Correct the y-axis direction
|
|
cbar1 = colorbar;
|
|
cbar1.Label.Interpreter = 'latex';
|
|
xlabel('$k_x l_o$','fontsize',16,'interpreter','latex');
|
|
ylabel('$k_y l_o$','fontsize',16,'interpreter','latex');
|
|
title(['2-D DDI Potential: $\theta = ',num2str(Params.theta), '; \eta = ', num2str(Params.eta),'$'],'fontsize',16,'interpreter','latex')
|
|
|
|
% == Quantum Fluctuations term == %
|
|
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2));
|
|
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
|
|
gQF = gamma5 * gammaQF;
|
|
|
|
EpsilonK = zeros(length(Transf.ky), length(Transf.kx));
|
|
gs_tilde = gs / (sqrt(2*pi) * MeanWidth);
|
|
|
|
% == Dispersion relation == %
|
|
for idx = 1:length(Transf.kx)
|
|
for jdx = 1:length(Transf.ky)
|
|
DeltaK = ((PlanckConstantReduced^2 .* (Transf.kx(idx).^2 + Transf.ky(jdx).^2)) ./ (2 * Dy164Mass)) + (2 * AtomNumberDensity * gs_tilde) + ((2 * AtomNumberDensity) .* VDk_fftshifted(jdx, idx)) + (3 * gQF * AtomNumberDensity^(3/2));
|
|
EpsilonK(jdx, idx) = sqrt(((PlanckConstantReduced^2 .* (Transf.kx(idx).^2 + Transf.ky(jdx).^2)) ./ (2 * Dy164Mass)) .* DeltaK);
|
|
end
|
|
end
|
|
|
|
EpsilonK = double(imag(EpsilonK) ~= 0); % 'isreal' returns 0 for complex numbers and 1 for real numbers, so we negate it
|
|
|
|
figure(12)
|
|
clf
|
|
set(gcf,'Position',[50 50 950 750])
|
|
imagesc(fftshift(Transf.kx)*1e-6, fftshift(Transf.ky)*1e-6, EpsilonK); % Specify x and y data for axes
|
|
set(gca, 'YDir', 'normal'); % Correct the y-axis direction
|
|
cbar1 = colorbar;
|
|
cbar1.Label.Interpreter = 'latex';
|
|
xlabel('$k_x l_o$','fontsize',16,'interpreter','latex');
|
|
ylabel('$k_y l_o$','fontsize',16,'interpreter','latex');
|
|
title(['2-D Dispersion: $\theta = ',num2str(Params.theta), '; \eta = ', num2str(Params.eta),'$'],'fontsize',16,'interpreter','latex')
|
|
|
|
%% Cycle through angles
|
|
|
|
% Define values for theta and eta
|
|
theta_values = 0:10:90; % Range of theta values (you can modify this)
|
|
eta_values = 0:10:90; % Range of eta values (you can modify this)
|
|
|
|
% Set up VideoWriter object to produce a movie
|
|
% v = VideoWriter('potential_movie', 'MPEG-4'); % Create a video object
|
|
% v.FrameRate = 5; % Frame rate of the video
|
|
% open(v); % Open the video file
|
|
|
|
% Loop over theta and eta values
|
|
for theta = theta_values
|
|
for eta = eta_values
|
|
% Update Params with current theta and eta
|
|
Params.theta = theta;
|
|
Params.eta = eta;
|
|
|
|
% Compute the potential for the current theta and eta
|
|
% == 2-D DDI Potential in k-space == %
|
|
VDk = compute2DPotentialInMomentumSpace(Transf, Params, MeanWidth);
|
|
VDk_fftshifted = fftshift(VDk);
|
|
|
|
% == Quantum Fluctuations term == %
|
|
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2));
|
|
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
|
|
gQF = gamma5 * gammaQF;
|
|
|
|
EpsilonK = zeros(length(Transf.ky), length(Transf.kx));
|
|
gs_tilde = gs / (sqrt(2*pi) * MeanWidth);
|
|
|
|
% == Dispersion relation == %
|
|
for idx = 1:length(Transf.kx)
|
|
for jdx = 1:length(Transf.ky)
|
|
DeltaK = ((PlanckConstantReduced^2 .* (Transf.kx(idx).^2 + Transf.ky(jdx).^2)) ./ (2 * Dy164Mass)) + (2 * AtomNumberDensity * gs_tilde) + ((2 * AtomNumberDensity) .* VDk_fftshifted(jdx, idx)) + (3 * gQF * AtomNumberDensity^(3/2));
|
|
EpsilonK(jdx, idx) = sqrt(((PlanckConstantReduced^2 .* (Transf.kx(idx).^2 + Transf.ky(jdx).^2)) ./ (2 * Dy164Mass)) .* DeltaK);
|
|
end
|
|
end
|
|
|
|
EpsilonK = double(imag(EpsilonK) ~= 0); % 'isreal' returns 0 for complex numbers and 1 for real numbers, so we negate it
|
|
|
|
% Plot the result
|
|
figure(13)
|
|
clf
|
|
set(gcf,'Position',[50 50 950 750])
|
|
imagesc(fftshift(Transf.kx)*1e-6, fftshift(Transf.ky)*1e-6, EpsilonK); % Specify x and y data for axes
|
|
set(gca, 'YDir', 'normal'); % Correct the y-axis direction
|
|
cbar1 = colorbar;
|
|
cbar1.Label.Interpreter = 'latex';
|
|
xlabel('$k_x l_o$','fontsize',16,'interpreter','latex');
|
|
ylabel('$k_y l_o$','fontsize',16,'interpreter','latex');
|
|
title(['$\theta = ',num2str(Params.theta), '; \eta = ', num2str(Params.eta),'$'],'fontsize',16,'interpreter','latex')
|
|
|
|
% Capture the frame and write to video
|
|
% frame = getframe(gcf); % Capture the current figure
|
|
% writeVideo(v, frame); % Write the frame to the video
|
|
end
|
|
end
|
|
|
|
% Close the video file
|
|
% close(v);
|
|
|
|
%%
|
|
function [Transf] = setupSpace(Params)
|
|
|
|
Transf.Xmax = 0.5*Params.Lx;
|
|
Transf.Ymax = 0.5*Params.Ly;
|
|
|
|
Nx = Params.Nx;
|
|
Ny = Params.Ny;
|
|
|
|
% Fourier grids
|
|
x = linspace(-0.5*Params.Lx,0.5*Params.Lx-Params.Lx/Params.Nx,Params.Nx);
|
|
Kmax = pi*Params.Nx/Params.Lx;
|
|
kx = linspace(-Kmax,Kmax,Nx+1);
|
|
kx = kx(1:end-1);
|
|
dkx = kx(2)-kx(1);
|
|
kx = fftshift(kx);
|
|
|
|
y = linspace(-0.5*Params.Ly,0.5*Params.Ly-Params.Ly/Params.Ny,Params.Ny);
|
|
Kmax = pi*Params.Ny/Params.Ly;
|
|
ky = linspace(-Kmax,Kmax,Ny+1);
|
|
ky = ky(1:end-1);
|
|
dky = ky(2)-ky(1);
|
|
ky = fftshift(ky);
|
|
|
|
[Transf.X,Transf.Y] = ndgrid(x,y);
|
|
[Transf.KX,Transf.KY] = ndgrid(kx,ky);
|
|
Transf.x = x;
|
|
Transf.y = y;
|
|
Transf.kx = kx;
|
|
Transf.ky = ky;
|
|
Transf.dx = x(2)-x(1);
|
|
Transf.dy = y(2)-y(1);
|
|
Transf.dkx = dkx;
|
|
Transf.dky = dky;
|
|
end
|
|
|
|
function VDk = compute2DPotentialInMomentumSpace(Transf, Params, MeanWidth)
|
|
% == Calculating the DDI potential in Fourier space with appropriate cutoff == %
|
|
% Angles of the dipole moment are defined in and away from the X-Z plane
|
|
% Interaction in K space
|
|
QX = Transf.KX*MeanWidth/sqrt(2);
|
|
QY = Transf.KY*MeanWidth/sqrt(2);
|
|
|
|
Qsq = QX.^2 + QY.^2;
|
|
absQ = sqrt(Qsq);
|
|
QDsq = QX.^2*cos(Params.eta)^2 + QY.^2*sin(Params.eta)^2; % eta here is the azimuthal angle of the dipole moment (angle from the x-axis)
|
|
|
|
% Bare interaction
|
|
Fpar = -1 + 3*sqrt(pi)*QDsq.*erfcx(absQ)./absQ; % Scaled complementary error function erfcx(x) = e^(x^2) * erfc(x)
|
|
Fperp = 2 - 3*sqrt(pi).*absQ.*erfcx(absQ);
|
|
Fpar(absQ == 0) = -1;
|
|
|
|
% Full DDI
|
|
VDk = (Fpar*sin(Params.theta)^2 + Fperp*cos(Params.theta)^2); % theta here is the polar angle of the dipole moment (angle from the z-axis)
|
|
end
|
|
|
|
function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced)
|
|
eps_dd = add/as; % Relative interaction strength
|
|
MeanWidth = x * lz;
|
|
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term
|
|
gamma4 = 1/(sqrt(2*pi) * MeanWidth);
|
|
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
|
|
gQF = gamma5 * gammaQF;
|
|
Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2)));
|
|
Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2));
|
|
ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz);
|
|
end
|
|
|
|
|
|
|