function U = generateAstigmaticCrossedBeamPotential(positions, waists, P, options) alpha = options.Polarizability; wavelength = options.Wavelength; delta = options.delta; del_y = options.foci_disp_crossed; del_y_1 = del_y(1); del_y_2 = del_y(2); foci_shift = options.foci_shift; focus_shift_beam_1 = foci_shift(1); focus_shift_beam_2 = foci_shift(2); beam_disp = options.beam_disp; beam_1_disp = repmat(beam_disp{1}, 1, size(positions, 2)); beam_2_disp = repmat(beam_disp{2}, 1, size(positions, 2)); % Calculate beam 1 potential beam_1_positions = positions + beam_1_disp; A_1 = 2*P(1) / (pi * w(beam_1_positions(2,:) - (del_y_1/2) + focus_shift_beam_1, waists{1}(1), wavelength) ... * w(beam_1_positions(2,:) + (del_y_1/2) + focus_shift_beam_1, waists{1}(2), wavelength)); U_1_tilde = (1 / (2 * eps0 * c)) * alpha * (4 * pi * eps0 * a0^3); U_1 = - U_1_tilde * A_1 .* exp(-2 * ((beam_1_positions(1,:) ./ w(beam_1_positions(2,:) - (del_y_1/2) + focus_shift_beam_1, waists{1}(1), wavelength)).^2 ... + (beam_1_positions(3,:) ./ w(beam_1_positions(2,:) + (del_y_1/2) + focus_shift_beam_1, waists{1}(2), wavelength)).^2)); % Rotation matrix for beam 2 R = rotation_matrix([0, 0, 1], deg2rad(delta)); beam_2_positions = R * (positions + beam_2_disp); % Calculate beam 2 potential A_2 = 2*P(2) / (pi * w(beam_2_positions(2,:) - (del_y_2/2) + focus_shift_beam_2, waists{2}(1), wavelength) ... * w(beam_2_positions(2,:) + (del_y_2/2) + focus_shift_beam_2, waists{2}(2), wavelength)); U_2_tilde = (1 / (2 * eps0 * c)) * alpha * (4 * pi * eps0 * a0^3); U_2 = - U_2_tilde * A_2 .* exp(-2 * ((beam_2_positions(1,:) ./ w(beam_2_positions(2,:) - (del_y_2/2) + focus_shift_beam_2, waists{2}(1), wavelength)).^2 ... + (beam_2_positions(3,:) ./ w(beam_2_positions(2,:) + (del_y_2/2) + focus_shift_beam_2, waists{2}(2), wavelength)).^2)); % Total potential U = U_1 + U_2; end