function plotPCAResults(pcaResults, scan_parameter_values, scan_reference_values, varargin) %% plotPCAResults: Plots PCA results in a style consistent with plotG2 % % Inputs: % pcaResults - struct returned by computePCAfromImages % scan_parameter_values, scan_reference_values % varargin - name-value pairs (same as plotG2 plus 'FigNumRange') % --- Parse name-value pairs --- p = inputParser; addParameter(p, 'FontName', 'Arial', @ischar); addParameter(p, 'FontSize', 14, @isnumeric); addParameter(p, 'Colormap', @Colormaps.coolwarm); addParameter(p, 'SkipSaveFigures', false, @islogical); addParameter(p, 'SaveDirectory', pwd, @ischar); addParameter(p, 'FigNumRange', [], @(x) isnumeric(x) && all(x>0)); parse(p, varargin{:}); opts = p.Results; Nx = pcaResults.Nx; Ny = pcaResults.Ny; coeff = pcaResults.coeff; score = pcaResults.score; explained = pcaResults.explained; raw_scan_param_vals = scan_parameter_values; unique_scan_param_vals = scan_reference_values; numGroups = numel(unique_scan_param_vals); colors = lines(numGroups); % --- Figure numbering setup --- if isempty(opts.FigNumRange) figCount = 1; figNums = []; else figNums = opts.FigNumRange; figCount = 1; end figPos = [100 100 950 750]; %% --- Figure 1: PC1 Image --- pc1_image = reshape(coeff(:,1), Nx, Ny); if ~isempty(figNums) fig = figure(figNums(figCount)); clf; else fig = figure; clf; end set(fig, 'Color', 'w', 'Position', figPos); imagesc(pc1_image); axis image off; colormap(opts.Colormap()); colorbar; title(sprintf('First Principal Component (PC1) Image - Explains %.2f%% Variance', explained(1)), ... 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2); if ~opts.SkipSaveFigures Plotter.saveFigure(fig, 'SaveFileName', 'PC1_Image.fig', 'SaveDirectory', opts.SaveDirectory); end figCount = figCount + 1; %% --- Figure 2: PC1 Scores Distribution Scatterplot --- if ~isempty(figNums) fig = figure(figNums(figCount)); clf; else fig = figure; clf; end set(fig, 'Color', 'w', 'Position', figPos); hold on; for g = 1:numGroups idx = raw_scan_param_vals == unique_scan_param_vals(g); scatter(repmat(unique_scan_param_vals(g), sum(idx),1), score(idx,1), 36, colors(g,:), 'filled'); end xlabel('Control Parameter', 'FontName', opts.FontName, 'FontSize', opts.FontSize); ylabel('PC1 Score', 'FontName', opts.FontName, 'FontSize', opts.FontSize); title('Evolution of PC1 Scores', 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2); grid on; set(gca,'XDir','reverse'); % Ensure decreasing scan_reference_values go left-to-right if ~opts.SkipSaveFigures Plotter.saveFigure(fig, 'SaveFileName', 'PC1_Scatter.fig', 'SaveDirectory', opts.SaveDirectory); end figCount = figCount + 1; %% --- Figure 3: PC1 Scores Distribution Histograms --- numTiles = min(6, numGroups); % show up to 6 groups tileIndices = round(linspace(1, numGroups, numTiles)); if ~isempty(figNums) fig = figure(figNums(figCount)); clf; else fig = figure; clf; end set(fig, 'Color', 'w', 'Position', figPos); tLayout = tiledlayout(3,2,'TileSpacing','compact','Padding','compact'); for t = 1:numTiles g = tileIndices(t); idx = raw_scan_param_vals == unique_scan_param_vals(g); data = score(idx,1); nexttile; histogram(data, 'Normalization', 'pdf', 'FaceColor', colors(g,:), 'FaceAlpha', 0.3); hold on; [f, xi] = ksdensity(data); plot(xi, f, 'Color', colors(g,:), 'LineWidth', 2); yl = ylim; plot([median(data) median(data)], yl, 'k--', 'LineWidth', 1); xlabel('PC1 Score'); ylabel('Probability'); title(sprintf('Control = %g', unique_scan_param_vals(g))); grid on; end sgtitle('PC1 Score Distributions'); if ~opts.SkipSaveFigures Plotter.saveFigure(fig, 'SaveFileName', 'PC1_Distributions.fig', 'SaveDirectory', opts.SaveDirectory); end figCount = figCount + 1; %% --- Figure 4: PC1 Scores Distribution Boxplot --- % Construct group labels explicitly groupLabels = arrayfun(@num2str, raw_scan_param_vals, 'UniformOutput', false); % Create categorical variable with specified order groupCats = categorical(groupLabels, ... arrayfun(@num2str, unique_scan_param_vals, 'UniformOutput', false), ... 'Ordinal', true); if ~isempty(figNums) fig = figure(figNums(figCount)); clf; else fig = figure; clf; end set(fig, 'Color', 'w', 'Position', figPos); % Plot boxplot with categorical groups boxplot(score(:,1), groupCats); xlabel('Control Parameter', 'FontName', opts.FontName, 'FontSize', opts.FontSize); ylabel('PC1 Score', 'FontName', opts.FontName, 'FontSize', opts.FontSize); title('PC1 Score Boxplots by Group', 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2); grid on; if ~opts.SkipSaveFigures Plotter.saveFigure(fig, 'SaveFileName', 'PC1_Boxplot.fig', 'SaveDirectory', opts.SaveDirectory); end figCount = figCount + 1; %% --- Figure 5: PC1 Scores Distribution Mean ± SEM --- if ~isempty(figNums) fig = figure(figNums(figCount)); clf; else fig = figure; clf; end set(fig, 'Color', 'w', 'Position', figPos); meanScores = arrayfun(@(g) mean(score(raw_scan_param_vals == g,1)), unique_scan_param_vals); semScores = arrayfun(@(g) std(score(raw_scan_param_vals == g,1))/sqrt(sum(raw_scan_param_vals == g)), unique_scan_param_vals); errorbar(unique_scan_param_vals, meanScores, semScores, '-o', 'LineWidth', 2); xlabel('Control Parameter', 'FontName', opts.FontName, 'FontSize', opts.FontSize); ylabel('Mean PC1 Score ± SEM', 'FontName', opts.FontName, 'FontSize', opts.FontSize); title('Mean ± SEM of PC1 Scores', 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2); grid on; set(gca,'XDir','reverse'); % consistent ordering if ~opts.SkipSaveFigures Plotter.saveFigure(fig, 'SaveFileName', 'PC1_MeanSEM.fig', 'SaveDirectory', opts.SaveDirectory); end figCount = figCount + 1; %% --- Figure 6: PC1 Scores Distribution Binder Cumulant --- cumulantsAll = cell2mat(arrayfun(@(g) {Calculator.computeCumulants(score(raw_scan_param_vals == g,1), 4)}, unique_scan_param_vals)); cumulantsAll = reshape(cumulantsAll, 4, numGroups); binderVals = cumulantsAll(4,:); if ~isempty(figNums) fig = figure(figNums(figCount)); clf; else fig = figure; clf; end set(fig, 'Color', 'w', 'Position', figPos); plot(unique_scan_param_vals, binderVals*1E-5, '-o', 'LineWidth', 2); % scale like older code xlabel('Control Parameter', 'FontName', opts.FontName, 'FontSize', opts.FontSize); ylabel('\kappa (\times 10^5)', 'FontName', opts.FontName, 'FontSize', opts.FontSize); title('Binder Cumulant of PC1 Scores', 'FontName', opts.FontName, 'FontSize', opts.FontSize + 2); grid on; set(gca,'XDir','reverse'); % consistent ordering if ~opts.SkipSaveFigures Plotter.saveFigure(fig, 'SaveFileName', 'PC1_BinderCumulant.fig', 'SaveDirectory', opts.SaveDirectory); end %% --- ANOVA Test --- p = anova1(score(:,1), groupLabels, 'off'); fprintf('[INFO] ANOVA p-value for PC1 score differences between groups: %.4e\n', p); end