%% Extract Images clear; close all; clc; %% ===== D-S Settings ===== groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ... "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ... "/images/Vertical_Axis_Camera/in_situ_absorption"]; folderPath = "//DyLabNAS/Data/TwoDGas/2025/06/23/"; run = '0300'; folderPath = strcat(folderPath, run); cam = 5; angle = 0; center = [1410, 2030]; span = [200, 200]; fraction = [0.1, 0.1]; pixel_size = 5.86e-6; % in meters magnification = 23.94; removeFringes = false; ImagingMode = 'HighIntensity'; PulseDuration = 5e-6; % in s % Fourier analysis settings % Radial Spectral Distribution theta_min = deg2rad(0); theta_max = deg2rad(180); N_radial_bins = 500; Radial_Sigma = 2; Radial_WindowSize = 5; % Choose an odd number for a centered moving average % Angular Spectral Distribution r_min = 10; r_max = 20; N_angular_bins = 180; Angular_Threshold = 75; Angular_Sigma = 2; Angular_WindowSize = 5; zoom_size = 50; % Zoomed-in region around center % Plotting and saving scan_parameter = 'ps_rot_mag_fin_pol_angle'; % scan_parameter = 'rot_mag_field'; savefileName = 'DropletsToStripes'; font = 'Bahnschrift'; if strcmp(savefileName, 'DropletsToStripes') scan_groups = 0:5:45; titleString = 'Droplets to Stripes'; elseif strcmp(savefileName, 'StripesToDroplets') scan_groups = 45:-5:0; titleString = 'Stripes to Droplets'; end % Flags skipNormalization = true; skipUnshuffling = true; skipPreprocessing = true; skipMasking = true; skipIntensityThresholding = true; skipBinarization = true; skipMovieRender = true; skipSaveFigures = true; skipSaveOD = true; %% ===== S-D Settings ===== groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ... "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ... "/images/Vertical_Axis_Camera/in_situ_absorption"]; folderPath = "//DyLabNAS/Data/TwoDGas/2025/06/24/"; run = '0001'; folderPath = strcat(folderPath, run); cam = 5; angle = 0; center = [1410, 2030]; span = [200, 200]; fraction = [0.1, 0.1]; pixel_size = 5.86e-6; % in meters magnification = 23.94; removeFringes = false; ImagingMode = 'HighIntensity'; PulseDuration = 5e-6; % in s % Fourier analysis settings % Radial Spectral Distribution theta_min = deg2rad(0); theta_max = deg2rad(180); N_radial_bins = 500; Radial_Sigma = 2; Radial_WindowSize = 5; % Choose an odd number for a centered moving average % Angular Spectral Distribution r_min = 10; r_max = 20; N_angular_bins = 180; Angular_Threshold = 75; Angular_Sigma = 2; Angular_WindowSize = 5; zoom_size = 50; % Zoomed-in region around center % Plotting and saving scan_parameter = 'ps_rot_mag_fin_pol_angle'; % scan_parameter = 'rot_mag_field'; savefileName = 'StripesToDroplets'; font = 'Bahnschrift'; if strcmp(savefileName, 'DropletsToStripes') scan_groups = 0:5:45 titleString = 'Droplets to Stripes'; elseif strcmp(savefileName, 'StripesToDroplets') scan_groups = 45:-5:0; titleString = 'Stripes to Droplets'; end % Flags skipNormalization = true; skipUnshuffling = false; skipPreprocessing = true; skipMasking = true; skipIntensityThresholding = true; skipBinarization = true; skipMovieRender = true; skipSaveFigures = true; skipSaveOD = true; %% ===== Load and compute OD image, rotate and extract ROI for analysis ===== % Get a list of all files in the folder with the desired file name pattern. filePattern = fullfile(folderPath, '*.h5'); files = dir(filePattern); refimages = zeros(span(1) + 1, span(2) + 1, length(files)); absimages = zeros(span(1) + 1, span(2) + 1, length(files)); for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); fprintf(1, 'Now reading %s\n', fullFileName); atm_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle)); bkg_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle)); dark_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle)); if (isempty(atm_img) && isa(atm_img, 'double')) || ... (isempty(bkg_img) && isa(bkg_img, 'double')) || ... (isempty(dark_img) && isa(dark_img, 'double')) refimages(:,:,k) = nan(size(refimages(:,:,k))); % fill with NaNs absimages(:,:,k) = nan(size(absimages(:,:,k))); else refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)'; absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img, ImagingMode, PulseDuration), center, span), fraction)'; end end % ===== Fringe removal ===== if removeFringes optrefimages = removefringesInImage(absimages, refimages); absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :); nimgs = size(absimages_fringe_removed,3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages_fringe_removed(:, :, i); end else nimgs = size(absimages(:, :, :),3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages(:, :, i); end end % ===== Get rotation angles ===== scan_parameter_values = zeros(1, length(files)); % Get information about the '/globals' group for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); info = h5info(fullFileName, '/globals'); for i = 1:length(info.Attributes) if strcmp(info.Attributes(i).Name, scan_parameter) if strcmp(scan_parameter, 'ps_rot_mag_fin_pol_angle') scan_parameter_values(k) = 180 - info.Attributes(i).Value; else scan_parameter_values(k) = info.Attributes(i).Value; end end end end % ===== Unshuffle if necessary to do so ===== if ~skipUnshuffling n_values = length(scan_groups); n_total = length(scan_parameter_values); % Infer number of repetitions n_reps = n_total / n_values; % Preallocate ordered arrays ordered_scan_values = zeros(1, n_total); ordered_od_imgs = cell(1, n_total); counter = 1; for rep = 1:n_reps for val = scan_groups % Find the next unused match for this val idx = find(scan_parameter_values == val, 1, 'first'); % Assign and remove from list to avoid duplicates ordered_scan_values(counter) = scan_parameter_values(idx); ordered_od_imgs{counter} = od_imgs{idx}; % Mark as used by removing scan_parameter_values(idx) = NaN; % NaN is safe since original values are 0:5:45 od_imgs{idx} = []; % empty cell so it won't be matched again counter = counter + 1; end end % Now assign back scan_parameter_values = ordered_scan_values; od_imgs = ordered_od_imgs; end %% Carry out PCA numPCs = 5; % Stack all 600 images into one data matrix [nImages x nPixels] allImgs3D = cat(3, od_imgs{:}); [Nx, Ny] = size(allImgs3D(:,:,1)); Xall = reshape(allImgs3D, [], numel(od_imgs))'; % [600 x (Nx*Ny)] % Global PCA [coeff, score, ~, ~, explained] = pca(Xall); %% Visualize PC1 % Extract the first principal component vector (eigenimage) pc1_vector = coeff(:,1); % Reshape back to original image dimensions pc1_image = reshape(pc1_vector, Nx, Ny); % Plot the PC1 image figure(1); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); imagesc(pc1_image); axis image off; colormap(Colormaps.coolwarm()); % or use 'jet', 'parula', etc. colorbar; title(sprintf('First Principal Component (PC1) Image - Explains %.2f%% Variance', explained(1))); %% Distribution scatter plot numGroups = numel(scan_groups); colors = lines(numGroups); figure(2); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); hold on; for g = 1:numGroups idx = scan_parameter_values == scan_groups(g); scatter(repmat(scan_groups(g), sum(idx),1), score(idx,1), 36, colors(g,:), 'filled'); end xlabel('Control Parameter'); ylabel('PC1 Score'); title('Evolution of PC1 Scores'); grid on; %% Distribution Histogram plot numGroups = length(scan_groups); colors = lines(numGroups); % Define number of bins globally numBins = 20; % Define common bin edges based on global PC1 score range minScore = min(score(:,1)); maxScore = max(score(:,1)); binEdges = linspace(minScore, maxScore, numBins+1); % +1 because edges are one more than bins binWidth = binEdges(2) - binEdges(1); % for scaling KDE figure(3); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); tiledlayout(ceil(numGroups/2), 2, 'TileSpacing', 'compact', 'Padding', 'compact'); for g = 1:numGroups groupVal = scan_groups(g); idx = scan_parameter_values == groupVal; groupPC1 = score(idx,1); nexttile; % Plot histogram histogram(groupPC1, 'Normalization', 'probability', ... 'FaceColor', colors(g,:), 'EdgeColor', 'none', ... 'BinEdges', binEdges); hold on; % Compute KDE [f, xi] = ksdensity(groupPC1, 'NumPoints', 1000); % Scale KDE to histogram probability scale f_scaled = f * binWidth; % Overlay KDE curve plot(xi, f_scaled, 'k', 'LineWidth', 1.5); % Vertical line at median med = median(groupPC1); yl = ylim; plot([med med], yl, 'k--', 'LineWidth', 1); xlabel('PC1 Score'); ylabel('Probability'); title(sprintf('Control Parameter = %d', groupVal)); grid on; hold off; end sgtitle('PC1 Score Distributions'); %% Box plot for PC1 scores by group groupLabels = cell(size(score,1),1); for g = 1:numGroups idx = scan_parameter_values == scan_groups(g); groupLabels(idx) = {sprintf('%d', scan_groups(g))}; end figure(4); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); boxplot(score(:,1), groupLabels); xlabel('Control Parameter'); ylabel('PC1 Score'); title('Evolution of PC1 Scores'); grid on; %% Mean and SEM plot for PC1 scores numGroups = length(scan_groups); meanPC1Scores = zeros(numGroups,1); semPC1Scores = zeros(numGroups,1); for g = 1:numGroups groupVal = scan_groups(g); idx = scan_parameter_values == groupVal; groupPC1 = score(idx,1); % PC1 scores for this group meanPC1Scores(g) = mean(groupPC1); semPC1Scores(g) = std(groupPC1)/sqrt(sum(idx)); % Standard error of mean end % Plot mean ± SEM with error bars figure(5); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); errorbar(scan_groups, meanPC1Scores, semPC1Scores, 'o-', ... 'LineWidth', 1.5, 'MarkerSize', 8, 'MarkerFaceColor', 'b'); xlabel('Control Parameter'); ylabel('Mean PC1 Score ± SEM'); title('Evolution of PC1 Scores'); grid on; %% Plot Binder Cumulant maxOrder = 4; % We only need up to order 4 here numGroups = length(scan_groups); kappa4 = NaN(1, numGroups); for g = 1:numGroups groupVal = scan_groups(g); idx = scan_parameter_values == groupVal; groupPC1 = score(idx, 1); cumulants = computeCumulants(groupPC1, maxOrder); kappa4(g) = cumulants(4); % 4th-order cumulant end % Plot figure(6); clf; set(gcf, 'Color', 'w', 'Position', [100 100 950 750]); plot(scan_groups, kappa4 * 1E-5, '-o', 'LineWidth', 1.5, 'MarkerFaceColor', 'b'); ylim([-12 12]) xlabel('Control Parameter'); ylabel('\kappa_4 (\times 10^{5})'); grid on; title('Evolution of Binder Cumulant of PC1 Score'); %% --- ANOVA test --- p = anova1(score(:,1), groupLabels, 'off'); fprintf('ANOVA p-value for PC1 score differences between groups: %.4e\n', p); %% Helper Functions function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction) % image must be a 2D numerical array [dim1, dim2] = size(img); s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction)); s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2); s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction)); s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2); ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]); end function ret = subtractBackgroundOffset(img, fraction) % Remove the background from the image. % :param dataArray: The image % :type dataArray: xarray DataArray % :param x_fraction: The fraction of the pixels used in x axis % :type x_fraction: float % :param y_fraction: The fraction of the pixels used in y axis % :type y_fraction: float % :return: The image after removing background % :rtype: xarray DataArray x_fraction = fraction(1); y_fraction = fraction(2); offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction); ret = img - offset; end function ret = cropODImage(img, center, span) % Crop the image according to the region of interest (ROI). % :param dataSet: The images % :type dataSet: xarray DataArray or DataSet % :param center: The center of region of interest (ROI) % :type center: tuple % :param span: The span of region of interest (ROI) % :type span: tuple % :return: The cropped images % :rtype: xarray DataArray or DataSet x_start = floor(center(1) - span(1) / 2); x_end = floor(center(1) + span(1) / 2); y_start = floor(center(2) - span(2) / 2); y_end = floor(center(2) + span(2) / 2); ret = img(y_start:y_end, x_start:x_end); end function imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime) %CALCULATEODIMAGE Calculates the optical density (OD) image for absorption imaging. % % imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime) % % Inputs: % imageAtom - Image with atoms % imageBackground - Image without atoms % imageDark - Image without light % mode - 'LowIntensity' (default) or 'HighIntensity' % exposureTime - Required only for 'HighIntensity' [in seconds] % % Output: % imageOD - Computed OD image % arguments imageAtom (:,:) {mustBeNumeric} imageBackground (:,:) {mustBeNumeric} imageDark (:,:) {mustBeNumeric} mode char {mustBeMember(mode, {'LowIntensity', 'HighIntensity'})} = 'LowIntensity' exposureTime double = NaN end % Compute numerator and denominator numerator = imageBackground - imageDark; denominator = imageAtom - imageDark; % Avoid division by zero numerator(numerator == 0) = 1; denominator(denominator == 0) = 1; % Calculate OD based on mode switch mode case 'LowIntensity' imageOD = -log(abs(denominator ./ numerator)); case 'HighIntensity' if isnan(exposureTime) error('Exposure time must be provided for HighIntensity mode.'); end imageOD = abs(denominator ./ numerator); imageOD = -log(imageOD) + (numerator - denominator) ./ (7000 * (exposureTime / 5e-6)); end end function [optrefimages] = removefringesInImage(absimages, refimages, bgmask) % removefringesInImage - Fringe removal and noise reduction from absorption images. % Creates an optimal reference image for each absorption image in a set as % a linear combination of reference images, with coefficients chosen to % minimize the least-squares residuals between each absorption image and % the optimal reference image. The coefficients are obtained by solving a % linear set of equations using matrix inverse by LU decomposition. % % Application of the algorithm is described in C. F. Ockeloen et al, Improved % detection of small atom numbers through image processing, arXiv:1007.2136 (2010). % % Syntax: % [optrefimages] = removefringesInImage(absimages,refimages,bgmask); % % Required inputs: % absimages - Absorption image data, % typically 16 bit grayscale images % refimages - Raw reference image data % absimages and refimages are both cell arrays containing % 2D array data. The number of refimages can differ from the % number of absimages. % % Optional inputs: % bgmask - Array specifying background region used, % 1=background, 0=data. Defaults to all ones. % Outputs: % optrefimages - Cell array of optimal reference images, % equal in size to absimages. % % Dependencies: none % % Authors: Shannon Whitlock, Caspar Ockeloen % Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and % S. Whitlock, Improved detection of small atom numbers through % image processing, arXiv:1007.2136 % Email: % May 2009; Last revision: 11 August 2010 % Process inputs % Set variables, and flatten absorption and reference images nimgs = size(absimages,3); nimgsR = size(refimages,3); xdim = size(absimages(:,:,1),2); ydim = size(absimages(:,:,1),1); R = single(reshape(refimages,xdim*ydim,nimgsR)); A = single(reshape(absimages,xdim*ydim,nimgs)); optrefimages=zeros(size(absimages)); % preallocate if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end k = find(bgmask(:)==1); % Index k specifying background region % Ensure there are no duplicate reference images % R=unique(R','rows')'; % comment this line if you run out of memory % Decompose B = R*R' using singular value or LU decomposition [L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition for j=1:nimgs b=R(k,:)'*A(k,j); % Obtain coefficients c which minimise least-square residuals lower.LT = true; upper.UT = true; c = linsolve(U,linsolve(L,b(p,:),lower),upper); % Compute optimised reference image optrefimages(:,:,j)=reshape(R*c,[ydim xdim]); end end