import math import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit from astropy import units as u, constants as ac ##################################################################### # HELPER FUNCTIONS # ##################################################################### def orderOfMagnitude(number): return math.floor(math.log(number, 10)) def rotation_matrix(axis, theta): """ Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. In 2-D it is just, thetaInRadians = np.radians(theta) c, s = np.cos(thetaInRadians), np.sin(thetaInRadians) R = np.array(((c, -s), (s, c))) In 3-D, one way to do it is use the Euler-Rodrigues Formula as is done here """ axis = np.asarray(axis) axis = axis / math.sqrt(np.dot(axis, axis)) a = math.cos(theta / 2.0) b, c, d = -axis * math.sin(theta / 2.0) aa, bb, cc, dd = a * a, b * b, c * c, d * d bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) def find_nearest(array, value): array = np.asarray(array) idx = (np.abs(array - value)).argmin() return idx def modulation_function(mod_amp, n_points, func = 'arccos'): if func == 'arccos': phi = np.linspace(0, 2*np.pi, n_points) first_half = 2/np.pi * np.arccos(phi/np.pi-1) - 1 second_half = np.flip(first_half) mod_func = mod_amp * np.concatenate((first_half, second_half)) dx = (max(mod_func) - min(mod_func))/(2*n_points) return dx, mod_func else: return None ##################################################################### # BEAM PARAMETERS # ##################################################################### # Rayleigh length def z_R(w_0, lamb)->np.ndarray: return np.pi*w_0**2/lamb # Beam Radius def w(pos, w_0, lamb): return w_0*np.sqrt(1+(pos / z_R(w_0, lamb))**2) ##################################################################### # COLLISION RATES, PSD # ##################################################################### def meanThermalVelocity(T, m = 164*u.u): return 4 * np.sqrt((ac.k_B * T) /(np.pi * m)) def particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u): # For a thermal cloud v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x') v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y') v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z') return N * (2 * np.pi)**3 * (v_x * v_y * v_z) * (m / (2 * np.pi * ac.k_B * T))**(3/2) def thermaldeBroglieWavelength(T, m = 164*u.u): return np.sqrt((2*np.pi*ac.hbar**2)/(m*ac.k_B*T)) def scatteringLength(B, FR_choice = 1, ABKG_choice = 1): # Dy 164 a_s versus B in 0 to 8G range # should match SupMat of PhysRevX.9.021012, fig S5 and descrption # https://journals.aps.org/prx/supplemental/10.1103/PhysRevX.9.021012/Resubmission_Suppmat.pdf if FR_choice == 1: # new values if ABKG_choice == 1: a_bkg = 85.5 * ac.a0 elif ABKG_choice == 2: a_bkg = 93.5 * ac.a0 elif ABKG_choice == 3: a_bkg = 77.5 * ac.a0 #FR resonances #[B11 B12 B2 B3 B4 B51 B52 B53 B6 B71 B72 B81 B82 B83 B9] resonanceB = [1.295, 1.306, 2.174, 2.336, 2.591, 2.74, 2.803, 2.78, 3.357, 4.949, 5.083, 7.172, 7.204, 7.134, 76.9] * u.G #resonance position #[wB11 wB12 wB2 wB3 wB4 wB51 wB52 wB53 wB6 wB71 wB72 wB81 wB82 wB83 wB9] resonancewB = [0.009, 0.010, 0.0005, 0.0005, 0.001, 0.0005, 0.021, 0.015, 0.043, 0.0005, 0.130, 0.024, 0.0005, 0.036, 3.1] * u.G #resonance width else: # old values if ABKG_choice == 1: a_bkg = 87.2 * ac.a0 elif ABKG_choice == 2: a_bkg = 95.2 * ac.a0 elif ABKG_choice == 3: a_bkg = 79.2 * ac.a0 #FR resonances #[B1 B2 B3 B4 B5 B6 B7 B8] resonanceB = [1.298, 2.802, 3.370, 5.092, 7.154, 2.592, 2.338, 2.177] * u.G #resonance position #[wB1 wB2 wB3 wB4 wB5 wB6 wB7 wB8] resonancewB = [0.018, 0.047, 0.048, 0.145, 0.020, 0.008, 0.001, 0.001] * u.G #resonance width #Get scattering length np.seterr(divide='ignore') a_s = a_bkg * np.prod([(1 - resonancewB[j] / (B - resonanceB[j])) for j in range(len(resonanceB))]) return a_s, a_bkg def dipolarLength(mu = 9.93 * ac.muB, m = 164*u.u): return (m * ac.mu0 * mu**2) / (12 * np.pi * ac.hbar**2) def scatteringCrossSection(B): return 8 * np.pi * scatteringLength(B)[0]**2 + ((32*np.pi)/45) * dipolarLength()**2 def calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N, T, B): #For a 3D Harmonic Trap return (particleDensity(w_x, w_z, Power, Polarizability, N, T) * scatteringCrossSection(B) * meanThermalVelocity(T) / (2 * np.sqrt(2))).decompose() def calculatePSD(w_x, w_z, Power, Polarizability, N, T): return (particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u) * thermaldeBroglieWavelength(T)**3).decompose() ##################################################################### # POTENTIALS # ##################################################################### def gravitational_potential(positions: "np.ndarray|u.quantity.Quantity", m:"float|u.quantity.Quantity"): return m * ac.g0 * positions def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray: A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2)) return U def astigmatic_single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", del_y:"float|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray: A = 2*P/(np.pi*w(positions[1,:] - (del_y/2), waists[0], wavelength)*w(positions[1,:] + (del_y/2), waists[1], wavelength)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:] - (del_y/2), waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:] + (del_y/2), waists[1], wavelength))**2)) return U def harmonic_potential(pos, v, xoffset, yoffset, m = 164*u.u): U_Harmonic = ((0.5 * m * (2 * np.pi * v*u.Hz)**2 * (pos*u.um - xoffset*u.um)**2)/ac.k_B).to(u.uK) + yoffset*u.uK return U_Harmonic.value def modulated_single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um, mod_amp:"float|u.quantity.Quantity"=1)->np.ndarray: mod_amp = mod_amp * waists[0] n_points = int(len(positions[0,:])/2) dx, x_mod = modulation_function(mod_amp, n_points, func = 'arccos') A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) dU = np.zeros(2*n_points) for i in range(len(x_mod)): dU = np.vstack((dU, np.exp(-2 * (np.subtract(x_mod[i], positions[0,:])/w(positions[1,:], waists[0], wavelength))**2))) U = - U_tilde * A * 1/(2*mod_amp) * np.trapz(dU, dx = dx, axis = 0) return U ##################################################################### # COMPUTE/EXTRACT TRAP POTENTIAL AND PARAMETERS # ##################################################################### def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity", alpha:float)->"float|u.quantity.Quantity": return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) def calculateTrapFrequency(w_x, w_z, Power, Polarizability, m = 164*u.u, dir = 'x'): TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability) TrapFrequency = np.nan if dir == 'x': TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_x**2))).decompose() elif dir == 'y': zReff = np.sqrt(2) * z_R(w_x, 1.064*u.um) * z_R(w_z, 1.064*u.um) / np.sqrt(z_R(w_x, 1.064*u.um)**2 + z_R(w_z, 1.064*u.um)**2) TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(2 * TrapDepth/ (m*zReff**2))).decompose() elif dir == 'z': TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth/ (m*w_z**2))).decompose() return round(TrapFrequency.value, 2)*u.Hz def extractTrapFrequency(Positions, TrappingPotential, axis): tmp_pos = Positions[axis, :] tmp_pot = TrappingPotential[axis] center_idx = np.argmin(tmp_pot) lb = int(round(center_idx - len(tmp_pot)/150, 1)) ub = int(round(center_idx + len(tmp_pot)/150, 1)) xdata = tmp_pos[lb:ub] Potential = tmp_pot[lb:ub] p0=[1e3, tmp_pos[center_idx].value, np.argmin(tmp_pot.value)] popt, pcov = curve_fit(harmonic_potential, xdata, Potential, p0) v = popt[0] dv = pcov[0][0]**0.5 return v, dv, popt, pcov def computeTrapPotential(w_x, w_z, Power, Polarizability, options): axis = options['axis'] extent = options['extent'] gravity = options['gravity'] astigmatism = options['astigmatism'] modulation = options['modulation'] if modulation: aspect_ratio = options['aspect_ratio'] current_ar = w_x/w_z w_x = w_x * (aspect_ratio / current_ar) TrappingPotential = [] TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability) IdealTrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK) projection_axis = np.array([0, 1, 0]) # default if axis == 0: projection_axis = np.array([1, 0, 0]) # radial direction (X-axis) elif axis == 1: projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis) elif axis == 2: projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis) x_Positions = np.arange(-extent, extent, 1)*u.um y_Positions = np.arange(-extent, extent, 1)*u.um z_Positions = np.arange(-extent, extent, 1)*u.um Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis] IdealTrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis]) IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK) if gravity and not astigmatism: # Influence of Gravity m = 164*u.u gravity_axis = np.array([0, 0, 1]) tilt_gravity = options['tilt_gravity'] theta = options['theta'] tilt_axis = options['tilt_axis'] if tilt_gravity: R = rotation_matrix(tilt_axis, np.radians(theta)) gravity_axis = np.dot(R, gravity_axis) gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis] TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) elif not gravity and astigmatism: # Influence of Astigmatism disp_foci = options['disp_foci'] TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability) TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) elif gravity and astigmatism: # Influence of Gravity and Astigmatism m = 164*u.u gravity_axis = np.array([0, 0, 1]) tilt_gravity = options['tilt_gravity'] theta = options['theta'] tilt_axis = options['tilt_axis'] disp_foci = options['disp_foci'] if tilt_gravity: R = rotation_matrix(tilt_axis, np.radians(theta)) gravity_axis = np.dot(R, gravity_axis) gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis] TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability) TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) else: TrappingPotential = IdealTrappingPotential if TrappingPotential[axis][0] > TrappingPotential[axis][-1]: EffectiveTrapDepthInKelvin = TrappingPotential[axis][-1] - min(TrappingPotential[axis]) elif TrappingPotential[axis][0] < TrappingPotential[axis][-1]: EffectiveTrapDepthInKelvin = TrappingPotential[axis][0] - min(TrappingPotential[axis]) else: EffectiveTrapDepthInKelvin = IdealTrapDepthInKelvin TrapDepthsInKelvin = [IdealTrapDepthInKelvin, EffectiveTrapDepthInKelvin] v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x') v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y') v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z') CalculatedTrapFrequencies = [v_x, v_y, v_z] v, dv, popt, pcov = extractTrapFrequency(Positions, IdealTrappingPotential, axis) IdealTrapFrequency = [v, dv] v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, axis) TrapFrequency = [v, dv] ExtractedTrapFrequencies = [IdealTrapFrequency, TrapFrequency] return Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies ##################################################################### # PLOTTING # ##################################################################### def plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, axis, popt, pcov): v = popt[0] dv = pcov[0][0]**0.5 happrox = harmonic_potential(Positions[axis, :].value, *popt) plt.figure() plt.plot(Positions[axis, :].value, happrox, '-r', label = '\u03BD = %.1f \u00B1 %.2f Hz'% tuple([v,dv])) plt.plot(Positions[axis, :], TrappingPotential[axis], 'ob', label = 'Gaussian Potential') plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.ylim([-TrapDepthsInKelvin[0].value, max(TrappingPotential[axis].value)]) plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() def generate_label(v, dv): unit = 'Hz' if v <= 0.0: v = np.nan dv = np.nan unit = 'Hz' elif v > 0.0 and orderOfMagnitude(v) > 2: v = v / 1e3 # in kHz dv = dv / 1e3 # in kHz unit = 'kHz' tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit]) return tf_label def plotPotential(Positions, ComputedPotentials, axis, Params = [], listToIterateOver = [], save = False): plt.figure(figsize=(9, 7)) for i in range(np.size(ComputedPotentials, 0)): if i % 2 == 0: j = int(i / 2) else: j = int((i - 1) / 2) IdealTrapDepthInKelvin = Params[j][0][0] EffectiveTrapDepthInKelvin = Params[j][0][1] idealv = Params[j][2][0][0] idealdv = Params[j][2][0][1] v = Params[j][2][1][0] dv = Params[j][2][1][1] if listToIterateOver: if np.size(ComputedPotentials, 0) == len(listToIterateOver): plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) else: if i % 2 == 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv)) elif i % 2 != 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) else: if i % 2 == 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv)) elif i % 2 != 0: plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) if axis == 0: dir = 'X - Horizontal' elif axis == 1: dir = 'Y - Propagation' else: dir = 'Z - Vertical' plt.ylim(top = 0) plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(loc=3, prop={'size': 12, 'weight': 'bold'}) if save: plt.savefig('pot_' + dir + '.png') plt.show() def plotIntensityProfileAndPotentials(Power, waists, alpha, wavelength, options): w_x = waists[0] w_z = waists[1] extent = options['extent'] modulation = options['modulation'] if not modulation: extent = 50 x_Positions = np.arange(-extent, extent, 1)*u.um y_Positions = np.arange(-extent, extent, 1)*u.um z_Positions = np.arange(-extent, extent, 1)*u.um idx = np.where(y_Positions==0)[0][0] alpha = Polarizability wavelength = 1.064*u.um xm,ym,zm = np.meshgrid(x_Positions, y_Positions, z_Positions, sparse=True, indexing='ij') ## Single Gaussian Beam A = 2*Power/(np.pi*w(ym, w_x, wavelength)*w(ym, w_z, wavelength)) I = A * np.exp(-2 * ((xm/w(ym, w_x, wavelength))**2 + (zm/w(ym, w_z, wavelength))**2)) I = np.transpose(I.to(u.MW/(u.cm*u.cm))) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * I U = (U/ac.k_B).to(u.uK) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(121) ax.set_title('Intensity Profile ($MW/cm^2$)\n Aspect Ratio = %.2f' %(w_x/w_z)) im = plt.imshow(I[:,idx,:].value, cmap="coolwarm", extent=[np.min(x_Positions.value), np.max(x_Positions.value), np.min(z_Positions.value), np.max(z_Positions.value)]) plt.xlabel('X - Horizontal (um)', fontsize= 12, fontweight='bold') plt.ylabel('Z - Vertical (um)', fontsize= 12, fontweight='bold') ax.set_aspect('equal') fig.colorbar(im, fraction=0.046, pad=0.04, orientation='vertical') bx = fig.add_subplot(122) bx.set_title('Trap Potential') plt.plot(x_Positions, U[np.where(x_Positions==0)[0][0], idx, :], label = 'X - Horizontal') plt.plot(z_Positions, U[:, idx, np.where(z_Positions==0)[0][0]], label = 'Z - Vertical') plt.ylim(top = 0) plt.xlabel('Extent (um)', fontsize= 12, fontweight='bold') plt.ylabel('Depth (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() else: mod_amp = options['modulation_amplitude'] x_Positions = np.arange(-extent, extent, 1)*u.um y_Positions = np.arange(-extent, extent, 1)*u.um z_Positions = np.arange(-extent, extent, 1)*u.um mod_amp = mod_amp * w_x n_points = int(len(x_Positions)/2) dx, xmod_Positions = modulation_function(mod_amp, n_points, func = 'arccos') idx = np.where(y_Positions==0)[0][0] xm,ym,zm,xmodm = np.meshgrid(x_Positions, y_Positions, z_Positions, xmod_Positions, sparse=True, indexing='ij') A = 2*Power/(np.pi*w(0*u.um , w_x, wavelength)*w(0*u.um , w_z, wavelength)) intensity_profile = A * 1/(2*mod_amp) * np.trapz(np.exp(-2 * (((xmodm - xm)/w(ym, w_x, wavelength))**2 + (zm/w(ym, w_z, wavelength))**2)), dx = dx, axis = -1) I = np.transpose(intensity_profile[:, idx, :].to(u.MW/(u.cm*u.cm))) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * I U = (U/ac.k_B).to(u.uK) fig = plt.figure(figsize=(12, 6)) ax = fig.add_subplot(121) ax.set_title('Intensity Profile ($MW/cm^2$)') im = plt.imshow(I.value, cmap="coolwarm", extent=[np.min(x_Positions.value), np.max(x_Positions.value), np.min(z_Positions.value), np.max(z_Positions.value)]) plt.xlabel('X - Horizontal (um)', fontsize= 12, fontweight='bold') plt.ylabel('Z - Vertical (um)', fontsize= 12, fontweight='bold') ax.set_aspect('equal') fig.colorbar(im, fraction=0.046, pad=0.04, orientation='vertical') bx = fig.add_subplot(122) bx.set_title('Trap Potential') plt.plot(x_Positions, U[np.where(x_Positions==0)[0][0], :], label = 'X - Horizontal') plt.plot(z_Positions, U[:, np.where(z_Positions==0)[0][0]], label = 'Z - Vertical') plt.ylim(top = 0) plt.xlabel('Extent (um)', fontsize= 12, fontweight='bold') plt.ylabel('Depth (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.show() def plotScatteringLengths(): BField = np.arange(0, 2.59, 1e-3) * u.G a_s_array = np.zeros(len(BField)) * ac.a0 for idx in range(len(BField)): a_s_array[idx], a_bkg = scatteringLength(BField[idx]) rmelmIdx = [i for i, x in enumerate(np.isinf(a_s_array.value)) if x] for x in rmelmIdx: a_s_array[x-1] = np.inf * ac.a0 plt.figure(figsize=(9, 7)) plt.plot(BField, a_s_array/ac.a0, '-b') plt.axhline(y = a_bkg/ac.a0, color = 'r', linestyle = '--') plt.text(min(BField.value) + 0.5, (a_bkg/ac.a0).value + 1, '$a_{bkg}$ = %.2f a0' %((a_bkg/ac.a0).value), fontsize=14, fontweight='bold') plt.xlim([min(BField.value), max(BField.value)]) plt.ylim([65, 125]) plt.xlabel('B field (G)', fontsize= 12, fontweight='bold') plt.ylabel('Scattering length (a0)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.show() ##################################################################### # RUN SCRIPT WITH OPTIONS BELOW # ##################################################################### if __name__ == '__main__': Power = 40*u.W Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability Wavelength = 1.064*u.um w_x, w_z = 27.5*u.um, 33.8*u.um # Beam Waists in the x and y directions # Power = 11*u.W # Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability # w_x, w_z = 54.0*u.um, 54.0*u.um # Beam Waists in the x and y directions options = { 'axis': 0, # axis referenced to the beam along which you want the dipole trap potential 'extent': 3e2, # range of spatial coordinates in one direction to calculate trap potential over 'modulation': True, 'aspect_ratio': 3.67, 'gravity': False, 'tilt_gravity': False, 'theta': 5, # in degrees 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam 'astigmatism': False, 'disp_foci': 3 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism) } """Plot ideal and trap potential resulting for given parameters only""" # ComputedPotentials = [] # Params = [] # Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Power, Polarizability, options) # ComputedPotentials.append(IdealTrappingPotential) # ComputedPotentials.append(TrappingPotential) # Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies]) # ComputedPotentials = np.asarray(ComputedPotentials) # plotPotential(Positions, ComputedPotentials, options['axis'], Params) """Plot harmonic fit for trap potential resulting for given parameters only""" # v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, options['axis']) # plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, options['axis'], popt, pcov) """Plot trap potential resulting for given parameters (with one parameter being a list of values and the potential being computed for each of these values) only""" # ComputedPotentials = [] # Params = [] # Power = [10, 20, 25, 30, 35, 40]*u.W # Single Beam Power # for p in Power: # Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, p, Polarizability, options) # ComputedPotentials.append(IdealTrappingPotential) # ComputedPotentials.append(TrappingPotential) # Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies]) # ComputedPotentials = np.asarray(ComputedPotentials) # plotPotential(Positions, ComputedPotentials, options['axis'], Params) """Plot transverse intensity profile and trap potential resulting for given parameters only""" # options = { # 'extent': 70, # range of spatial coordinates in one direction to calculate trap potential over # 'modulation': True, # 'modulation_amplitude': 4.37 # } # plotIntensityProfileAndPotentials(Power, [w_x, w_z], Polarizability, Wavelength, options) """Calculate relevant parameters for evaporative cooling""" AtomNumber = 1.13 * 1e7 Temperature = 100 * u.uK BField = 2.1 * u.G modulation = False if modulation: aspect_ratio = 3.67 init_ar = w_x / w_z w_x = w_x * (aspect_ratio / init_ar) n = particleDensity(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature, m = 164*u.u).decompose().to(u.cm**(-3)) Gamma_elastic = calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature, B = BField) PSD = calculatePSD(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature).decompose() print('Particle Density = %.2E ' % (n.value) + str(n.unit)) print('Elastic Collision Rate = %.2f ' % (Gamma_elastic.value) + str(Gamma_elastic.unit)) print('PSD = %.2E ' % (PSD.value)) v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x') v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y') v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z') print('v_x = %.2f ' %(v_x.value) + str(v_x.unit)) print('v_y = %.2f ' %(v_y.value) + str(v_y.unit)) print('v_z = %.2f ' %(v_z.value) + str(v_z.unit)) print('a_s = %.2f ' %(scatteringLength(BField)[0] / ac.a0)) # plotScatteringLengths()