%% Tilting of the dipoles % Atom Number = 1250 ppum % System size = [5 * l_rot, 5 * l_rot] theta_values = 0:1:7; %% v_z = 500 as_values_500 = [76.408020791433103, 76.408020791433103, 76.538777583310534, 76.538777583310534, 76.538777583310534, 76.538777583310534, 76.669534375187951, 76.669534375187951]; num_iterations = length(theta_values); for i = 1:num_iterations OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 101250; OptionsStruct.DipolarPolarAngle = deg2rad(theta_values(i)); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = as_values_500(i); OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [9, 9]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1.2; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = i-1; % Assign a unique JobNumber per iteration OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz500'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); % Run Solver [Params, Transf, psi, V, VDk] = solver.run(); end %% v_z = 750 as_values_750 = [70.523965156949174, 70.523965156949174, 70.523965156949174, 70.523965156949174, 70.523965156949174, 70.654721948826605, 70.654721948826605, 70.785478740704022]; num_iterations = length(theta_values); for i = 1:num_iterations OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 61250; OptionsStruct.DipolarPolarAngle = deg2rad(theta_values(i)); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = as_values_750(i); OptionsStruct.TrapFrequencies = [0, 0, 750]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [7, 7]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.85; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = i-1; % Assign a unique JobNumber per iteration OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz750'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); % Run Solver [Params, Transf, psi, V, VDk] = solver.run(); end %% v_z = 1000 as_values_1000 = [65.947477441239442, 65.947477441239442, 65.947477441239442, 65.947477441239442, 66.078234233116873, 66.078234233116873, 66.078234233116873, 66.208991024994290]; num_iterations = length(theta_values); for i = 1:num_iterations OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 45000; OptionsStruct.DipolarPolarAngle = deg2rad(theta_values(i)); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = as_values_1000(i); OptionsStruct.TrapFrequencies = [0, 0, 1000]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [6, 6]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.7; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = i-1; % Assign a unique JobNumber per iteration OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz1000'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); % Run Solver [Params, Transf, psi, V, VDk] = solver.run(); end %% v_z = 2000 as_values_2000 = [53.917852588516730, 53.917852588516730, 53.917852588516730, 54.048609380394161, 54.048609380394161, 54.048609380394161, 54.179366172271585, 54.310122964149002]; num_iterations = length(theta_values); for i = 1:num_iterations OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 31250; OptionsStruct.DipolarPolarAngle = deg2rad(theta_values(i)); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = as_values_2000(i); OptionsStruct.TrapFrequencies = [0, 0, 2000]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [5, 5]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.5; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = i-1; % Assign a unique JobNumber per iteration OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz2000'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); % Run Solver [Params, Transf, psi, V, VDk] = solver.run(); end %% Tilting of the dipoles % Atom Number = 1250 ppum % System size = [5 * l_rot, 5 * l_rot] theta_values = 8:1:15; %% v_z = 500 as_values_500 = [76.800291167065367, 76.800291167065367, 76.931047958942784, 77.061804750820215, 77.061804750820215, 77.192561542697632, 77.323318334575049, 77.454075126452480]; num_iterations = length(theta_values); for i = 1:num_iterations OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 101250; OptionsStruct.DipolarPolarAngle = deg2rad(theta_values(i)); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = as_values_500(i); OptionsStruct.TrapFrequencies = [0, 0, 500]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [9, 9]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 3E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 1.2; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = i-1; % Assign a unique JobNumber per iteration OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz500'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); % Run Solver [Params, Transf, psi, V, VDk] = solver.run(); end %% v_z = 750 as_values_750 = [70.785478740704022, 70.916235532581439, 71.046992324458870, 71.046992324458870, 71.177749116336287, 71.308505908213704, 71.439262700091120, 71.700776283845968]; num_iterations = length(theta_values); for i = 1:num_iterations OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 61250; OptionsStruct.DipolarPolarAngle = deg2rad(theta_values(i)); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = as_values_750(i); OptionsStruct.TrapFrequencies = [0, 0, 750]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [7, 7]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 3E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.85; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = i-1; % Assign a unique JobNumber per iteration OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz750'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); % Run Solver [Params, Transf, psi, V, VDk] = solver.run(); end %% v_z = 1000 as_values_1000 = [66.339747816871707, 66.339747816871707, 66.470504608749138, 66.601261400626555, 66.732018192503972, 66.862774984381389, 66.993531776258820, 67.255045360013654]; num_iterations = length(theta_values); for i = 1:num_iterations OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 45000; OptionsStruct.DipolarPolarAngle = deg2rad(theta_values(i)); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = as_values_1000(i); OptionsStruct.TrapFrequencies = [0, 0, 1000]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [6, 6]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 3E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.7; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = i-1; % Assign a unique JobNumber per iteration OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz1000'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); % Run Solver [Params, Transf, psi, V, VDk] = solver.run(); end %% v_z = 2000 as_values_2000 = [54.310122964149002, 54.440879756026426, 54.571636547903843, 54.702393339781267, 54.963906923536108, 55.094663715413525, 55.225420507290949, 55.486934091045789]; num_iterations = length(theta_values); for i = 1:num_iterations OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 31250; OptionsStruct.DipolarPolarAngle = deg2rad(theta_values(i)); OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = as_values_2000(i); OptionsStruct.TrapFrequencies = [0, 0, 2000]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [5, 5]; OptionsStruct.TimeStepSize = 0.005; % in s OptionsStruct.MinimumTimeStepSize = 1E-5; % in s OptionsStruct.TimeCutOff = 3E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.NoiseScaleFactor = 0.05; OptionsStruct.MaxIterations = 10; OptionsStruct.VariationalWidth = 0.5; OptionsStruct.WidthLowerBound = 0.01; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 5e-3; OptionsStruct.PlotLive = false; OptionsStruct.JobNumber = i-1; % Assign a unique JobNumber per iteration OptionsStruct.RunOnGPU = true; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles/TransitionAngle/Hz2000'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); % Run Solver [Params, Transf, psi, V, VDk] = solver.run(); end