function [Params] = parameters() %%--%% Parameters %%--%% %========= Simulation =========% pert=0; %0 = no perturbation during real-time, 1=perturbation %method=1; %0 = normal dipolar potential, 1=spherical cut-off, 2=cylindrical cut-off %Energy tolerance Params.Etol=5e-10; Params.rtol = 1e-5; Params.theta=pi/2; %pi/2 dipoles along x, theta=0 dipoles along z Params.cut_off=2e6; %sometimes the imaginary time gets a little stuck %even though the solution is good, this just stops it going on forever %========= Constants =========% hbar = 1.0545718e-34; %Planck constant [J.s] kbol = 1.38064852e-23; %Boltzmann Constant [J/K] mu0 = 1.25663706212e-6; %Vacuum Permeability [N/A^2] -- muB = 9.274009994e-24; %Bohr Magneton [J/T] a0 = 5.2917721067e-11; %Bohr radius [m] m0 = 1.660539066e-27; %Atomic mass [kg] w0 = 2*pi*100; %angular frequency unit [s^-1] mu0factor = 0.3049584233607396;% =(m0/me)*pi*alpha^2 -- me=mass of electron, alpha=fine struct. const. % mu0=mu0factor *hbar^2*a0/(m0*muB^2) %=============================% %Number of points in each direction Params.Nx = 128; Params.Ny = 128; Params.Nz = 96; %Dimensions (in units of l0) Params.Lx = 40; Params.Ly = 40; Params.Lz = 20; %Masses Params.m = 162*m0; l0 = sqrt(hbar/(Params.m*w0)); %Defining a harmonic oscillator length %Atom numbers % Params.ppum = 2500; %particles per micron % Params.N = Params.Lz*Params.ppum*l0*1e6; Params.N = 10^6; %Dipole lengths (units of muB) Params.mu = 9.93*muB; %scattering lengths Params.as = 86*a0; %trapping frequencies Params.wx = 2*pi*125; Params.wy = 2*pi*125; Params.wz = 2*pi*250; %Time step Params.dt = 0.0005; Params.mindt = 1e-6; %Minimum size for a time step using adaptive dt %Stochastic GPE Params.gamma_S = 7.5*10^(-3); %gamma for the stochastic GPE Params.muchem = 12.64*Params.wz/w0; %================ Parameters defined by those above ================% % == Calculating quantum fluctuations == % eps_dd = Params.add/Params.as; if eps_dd == 0 Q5 = 1; elseif eps_dd == 1 Q5 = 3*sqrt(3)/2; else yeps = (1-eps_dd)/(3*eps_dd); Q5 = (3*eps_dd)^(5/2)*( (8+26*yeps+33*yeps^2)*sqrt(1+yeps) + 15*yeps^3*log((1+sqrt(1+yeps))/sqrt(yeps)) )/48; Q5 = real(Q5); end Params.gammaQF = 128/3*sqrt(pi*(Params.as/l0)^5)*Q5; %Contact interaction strength (units of l0/m) Params.gs = 4*pi*Params.as/l0; %Dipole lengths Params.add = mu0*Params.mu^2*Params.m/(12*pi*hbar^2); %DDI strength Params.gdd = 12*pi*Params.add/l0; %sometimes the 12 is a 4? --> depends on how Vdk (DDI) is defined %Trap gamma Params.gx=(Params.wx/w0)^2; Params.gy=(Params.wy/w0)^2; Params.gz=(Params.wz/w0)^2; %Loading the rest into Params Params.hbar = hbar; Params.kbol = kbol; Params.mu0 = mu0; Params.muB = muB; Params.a0 = a0; Params.w0 = w0; Params.l0 = l0;