function [psi,V,VDk] = Initialize(Params,Transf) format long X = Transf.X; Y = Transf.Y; Z = Transf.Z; Zcutoff = Params.Lz/2; % == Potential == % V = 0.5*(Params.gx.*X.^2+Params.gy.*Y.^2+Params.gz*Z.^2); % == Calculating the DDIs == % % For a cylindrical cutoff, we first construct a kr grid based on the 3D parameters using Bessel quadrature loadDDI = 1; if loadDDI == 1 VDk = load(sprintf('./Data/VDk_M.mat')); VDk = VDk.VDk; else Params.Lr = 0.5*min(Params.Lx,Params.Ly); Params.Nr = max(Params.Nx,Params.Ny); [TransfRad] = Simulator.SetupSpaceRadial(Params); %morder really doesn't matter VDk = Simulator.VDcutoff(TransfRad.kr,TransfRad.kz,TransfRad.Rmax,Zcutoff); disp('Calculated radial grid and cutoff') % VDk = interp2(DDI.kz,DDI.kr,DDI.VDk,Transf.kz,Transf.kr,'spline'); fullkr = [-flip(TransfRad.kr)',TransfRad.kr']; [KR,KZ] = ndgrid(fullkr,TransfRad.kz); [KX3D,KY3D,KZ3D] = ndgrid(ifftshift(Transf.kx),ifftshift(Transf.ky),ifftshift(Transf.kz)); KR3D = sqrt(KX3D.^2 + KY3D.^2); fullVDK = [flip(VDk',2),VDk']'; VDk = interpn(KR,KZ,fullVDK,KR3D,KZ3D,'spline',-1/3); %Interpolating the radial VDk onto a new grid VDk = fftshift(VDk); save(sprintf('./Data/VDk_M.mat'),'VDk'); end disp('Finished DDI') % == Setting up the initial wavefunction == % ellx = sqrt(Params.hbar/(Params.m*Params.wx))/Params.l0; elly = sqrt(Params.hbar/(Params.m*Params.wy))/Params.l0; ellz = sqrt(Params.hbar/(Params.m*Params.wz))/Params.l0; Rx = 4*sqrt(2)*ellx; Ry = 4*sqrt(2)*elly; Rz = sqrt(2)*ellz; X0 = 0.0*Transf.Xmax; Y0 = 0.0*Transf.Ymax; Z0 = 0*Transf.Zmax; psiz = exp(-(Z-Z0).^2/Rz^2)/sqrt(ellz*sqrt(pi)); psi2d = load(sprintf('./Data/Seed/psi_2d_SS.mat'),'psiseed_2d'); psi2d = psi2d.psiseed_2d; psi = psiz.*repmat(psi2d,[1 1 length(Transf.z)]); % Add some noise r = normrnd(0,1,size(X)); theta = rand(size(X)); noise = r.*exp(2*pi*1i*theta); psi = psi + 0.00*noise; Norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz; psi = sqrt(Params.N)*psi/sqrt(Norm); end