%% This script is testing the functionalities of the Dipolar Gas Simulator % % Important: Run only sectionwise!! %% - Create Simulator, Potential and Calculator object with specified options OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 1E5; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 86; OptionsStruct.TrapFrequencies = [10, 10, 72.4]; OptionsStruct.TrapDepth = 5; OptionsStruct.BoxSize = 15; OptionsStruct.TrapPotentialType = 'Harmonic'; OptionsStruct.NumberOfGridPoints = [256, 512, 256]; OptionsStruct.Dimensions = [50, 120, 150]; OptionsStruct.CutoffType = 'Cylindrical'; OptionsStruct.SimulationMode = 'ImaginaryTimeEvolution'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution' OptionsStruct.TimeStepSize = 500E-6; % in s OptionsStruct.NumberOfTimeSteps = 2E6; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.JobNumber = 1; OptionsStruct.RunOnGPU = false; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Data'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct sim = Simulator.DipolarGas(options{:}); pot = Simulator.Potentials(options{:}); sim.Potential = pot.trap(); % + pot.repulsive_chopstick(); %-% Run Simulation %-% [Params, Transf, psi, V, VDk] = sim.run(); %% - Plot numerical grid % Plotter.visualizeSpace(Transf) %% - Plot trap potential Plotter.visualizeTrapPotential(sim.Potential,Params,Transf) %% - Plot initial wavefunction Plotter.visualizeWavefunction(psi,Params,Transf) %% - Plot GS wavefunction Plotter.visualizeGSWavefunction(Params.njob) %% - Create Variational2D and Calculator object with specified options OptionsStruct = struct; OptionsStruct.NumberOfAtoms = 1E5; OptionsStruct.DipolarPolarAngle = 0; OptionsStruct.DipolarAzimuthAngle = 0; OptionsStruct.ScatteringLength = 98.0676; % Critical point: 102.515; Triangular phase: 98.0676; Stripe phase: 102.2518; Honeycomb phase: 102.6441 OptionsStruct.TrapFrequencies = [10, 10, 72.4]; OptionsStruct.TrapPotentialType = 'None'; OptionsStruct.NumberOfGridPoints = [128, 128]; OptionsStruct.Dimensions = [7.5, 7.5]; % Critical point: 6.996; Triangular phase: 7.5; Stripe phase: 6.972; Honeycomb phase: 6.239 for both for Atom Number fixed to 1E5 OptionsStruct.TimeStepSize = 5E-6; % in s OptionsStruct.TimeCutOff = 1E5; % in s OptionsStruct.EnergyTolerance = 5E-10; OptionsStruct.ResidualTolerance = 1E-05; OptionsStruct.MaxIterations = 20; OptionsStruct.VariationalWidth = 4; OptionsStruct.WidthLowerBound = 0.2; OptionsStruct.WidthUpperBound = 12; OptionsStruct.WidthCutoff = 1e-4; OptionsStruct.PlotLive = true; OptionsStruct.JobNumber = 1; OptionsStruct.RunOnGPU = false; OptionsStruct.SaveData = true; OptionsStruct.SaveDirectory = './Data'; options = Helper.convertstruct2cell(OptionsStruct); clear OptionsStruct solver = VariationalSolver2D.DipolarGas(options{:}); pot = VariationalSolver2D.Potentials(options{:}); solver.Potential = pot.trap(); %-% Run Solver %-% [Params, Transf, psi, V, VDk] = solver.run(); %% - Plot numerical grid % Plotter.visualizeSpace2D(Transf) %% - Plot initial wavefunction Plotter.visualizeWavefunction2D(psi,Params,Transf) %% - Plot GS wavefunction Plotter.visualizeGSWavefunction2D(Params.njob)