%% Physical constants PlanckConstant = 6.62607015E-34; PlanckConstantReduced = 6.62607015E-34/(2*pi); FineStructureConstant = 7.2973525698E-3; ElectronMass = 9.10938291E-31; GravitationalConstant = 6.67384E-11; ProtonMass = 1.672621777E-27; AtomicMassUnit = 1.660539066E-27; BohrRadius = 5.2917721067E-11; BohrMagneton = 9.274009994E-24; BoltzmannConstant = 1.38064852E-23; StandardGravityAcceleration = 9.80665; SpeedOfLight = 299792458; StefanBoltzmannConstant = 5.670373E-8; ElectronCharge = 1.602176634E-19; VacuumPermeability = 1.25663706212E-6; DielectricConstant = 8.8541878128E-12; ElectronGyromagneticFactor = -2.00231930436153; AvogadroConstant = 6.02214076E23; ZeroKelvin = 273.15; GravitationalAcceleration = 9.80553; VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 % Dy specific constants Dy164Mass = 163.929174751*AtomicMassUnit; Dy164IsotopicAbundance = 0.2826; DyMagneticMoment = 9.93*BohrMagneton; %% Roton instability boundary for tilted dipoles wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length gdd = VacuumPermeability*DyMagneticMoment^2/3; nadd2s = 0.005:0.0025:0.5; as_to_add = 0.3:0.025:0.95; var_widths = zeros(length(as_to_add), length(nadd2s)); x0 = 5; Aineq = []; Bineq = []; Aeq = []; Beq = []; lb = [1]; ub = [10]; nonlcon = []; fminconopts = optimoptions(@fmincon,'Display','off', 'StepTolerance', 1.0000e-11, 'MaxIterations',1500); for idx = 1:length(nadd2s) for jdx = 1:length(as_to_add) AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms as = (as_to_add(jdx) * add); % Scattering length gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength TotalEnergyPerParticle = @(x) computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced); sigma = fmincon(TotalEnergyPerParticle, x0, Aineq, Bineq, Aeq, Beq, lb, ub, nonlcon, fminconopts); var_widths(jdx, idx) = sigma; end end %% ====================================================================================================================================================== % figure(7) clf set(gcf,'Position',[50 50 1850 750]) theta = 66; % Polar angle of dipole moment phi = 0; % Azimuthal angle of momentum vector k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector instability_boundary = zeros(length(as_to_add), length(nadd2s)); ScatteringLengths = zeros(length(as_to_add), 1); AtomNumber = zeros(length(nadd2s), 1); w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length tsize = 10 * l0; for idx = 1:length(nadd2s) for jdx = 1:length(as_to_add) AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms AtomNumber(idx) = AtomNumberDensity*tsize^2; as = (as_to_add(jdx) * add); % Scattering length ScatteringLengths(jdx) = as/BohrRadius; eps_dd = add/as; % Relative interaction strength gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength gdd = VacuumPermeability*DyMagneticMoment^2/3; MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space % == Quantum Fluctuations term == % gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); gQF = gamma5 * gammaQF; % == Dispersion relation == % DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); instability_boundary(jdx, idx) = ~isreal(EpsilonK); end end subplot(1, 2, 1); % 1 row, 2 columns, first subplot imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes set(gca, 'YDir', 'normal'); % Correct the y-axis direction colorbar; % Add a colorbar caxis([0 1]) xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); title(['Along Y: $\theta = ',num2str(theta), '; \phi = ', num2str(phi),'$'],'fontsize',16,'interpreter','latex') theta = 66; % Polar angle of dipole moment phi = 90; % Azimuthal angle of momentum vector k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector instability_boundary = zeros(length(as_to_add), length(nadd2s)); ScatteringLengths = zeros(length(as_to_add), 1); AtomNumber = zeros(length(nadd2s), 1); w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length tsize = 10 * l0; for idx = 1:length(nadd2s) for jdx = 1:length(as_to_add) AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms AtomNumber(idx) = AtomNumberDensity*tsize^2; as = (as_to_add(jdx) * add); % Scattering length ScatteringLengths(jdx) = as/BohrRadius; eps_dd = add/as; % Relative interaction strength gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength gdd = VacuumPermeability*DyMagneticMoment^2/3; MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space % == Quantum Fluctuations term == % gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); gQF = gamma5 * gammaQF; % == Dispersion relation == % DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); instability_boundary(jdx, idx) = ~isreal(EpsilonK); end end % set(gcf,'Position',[50 50 950 750]) subplot(1, 2, 2); % 1 row, 2 columns, first subplot imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes set(gca, 'YDir', 'normal'); % Correct the y-axis direction colorbar; % Add a colorbar caxis([0 1]) xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); title(['Along X: $\theta = ',num2str(theta), '; \phi = ', num2str(phi),'$'],'fontsize',16,'interpreter','latex') %{ imagesc(AtomNumber*1E-5, ScatteringLengths, instability_boundary); % Specify x and y data for axes set(gca, 'YDir', 'normal'); % Correct the y-axis direction cbar1 = colorbar; cbar1.Label.Interpreter = 'latex'; caxis([0 1]) % ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); %} sgtitle('Mean-field instability boundary','fontsize',16,'interpreter','latex') %% Cycle through angles % Define values for theta and phi theta_values = 0:2:90; % Range of theta values (you can modify this) % Set up VideoWriter object to produce a movie v = VideoWriter('rib_movie', 'MPEG-4'); % Create a video object v.FrameRate = 5; % Frame rate of the video open(v); % Open the video file for theta = theta_values figure(7) clf set(gcf,'Position',[50 50 1850 750]) phi = 0; % Azimuthal angle of momentum vector k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector instability_boundary = zeros(length(as_to_add), length(nadd2s)); ScatteringLengths = zeros(length(as_to_add), 1); AtomNumber = zeros(length(nadd2s), 1); w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length tsize = 10 * l0; for idx = 1:length(nadd2s) for jdx = 1:length(as_to_add) AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms AtomNumber(idx) = AtomNumberDensity*tsize^2; as = (as_to_add(jdx) * add); % Scattering length ScatteringLengths(jdx) = as/BohrRadius; eps_dd = add/as; % Relative interaction strength gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength gdd = VacuumPermeability*DyMagneticMoment^2/3; MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space % == Quantum Fluctuations term == % gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); gQF = gamma5 * gammaQF; % == Dispersion relation == % DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); instability_boundary(jdx, idx) = ~isreal(EpsilonK); end end subplot(1, 2, 1); % 1 row, 2 columns, first subplot imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes set(gca, 'YDir', 'normal'); % Correct the y-axis direction colorbar; % Add a colorbar caxis([0 1]) xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); title(['Along Y: $\theta = ',num2str(theta), '; \phi = ', num2str(phi),'$'],'fontsize',16,'interpreter','latex') phi = 90; % Azimuthal angle of momentum vector k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector instability_boundary = zeros(length(as_to_add), length(nadd2s)); ScatteringLengths = zeros(length(as_to_add), 1); AtomNumber = zeros(length(nadd2s), 1); w0 = 2 * pi * 61.6316; % Trap frequency in the tight confinement direction l0 = sqrt(PlanckConstantReduced/(Dy164Mass * w0)); % Defining a harmonic oscillator length tsize = 10 * l0; for idx = 1:length(nadd2s) for jdx = 1:length(as_to_add) AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms AtomNumber(idx) = AtomNumberDensity*tsize^2; as = (as_to_add(jdx) * add); % Scattering length ScatteringLengths(jdx) = as/BohrRadius; eps_dd = add/as; % Relative interaction strength gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength gdd = VacuumPermeability*DyMagneticMoment^2/3; MeanWidth = var_widths(jdx, idx) * lz; % Mean width of Gaussian ansatz [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi); % DDI potential in k-space % == Quantum Fluctuations term == % gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); gQF = gamma5 * gammaQF; % == Dispersion relation == % DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); instability_boundary(jdx, idx) = ~isreal(EpsilonK); end end % set(gcf,'Position',[50 50 950 750]) subplot(1, 2, 2); % 1 row, 2 columns, first subplot imagesc(nadd2s, as_to_add, instability_boundary); % Specify x and y data for axes set(gca, 'YDir', 'normal'); % Correct the y-axis direction colorbar; % Add a colorbar caxis([0 1]) xlabel('$na_{dd}^2$','fontsize',16,'interpreter','latex'); ylabel('$a_s/a_{dd}$','fontsize',16,'interpreter','latex'); title(['Along X: $\theta = ',num2str(theta), '; \phi = ', num2str(phi),'$'],'fontsize',16,'interpreter','latex') %{ imagesc(AtomNumber*1E-5, ScatteringLengths, instability_boundary); % Specify x and y data for axes set(gca, 'YDir', 'normal'); % Correct the y-axis direction cbar1 = colorbar; cbar1.Label.Interpreter = 'latex'; caxis([0 1]) % ylabel(cbar1,'$(\times 10^{-31})$','FontSize',16,'Rotation',270) xlabel(' Atom number for a trap area of 100$\mu m^2 ~ (\times 10^5)$','fontsize',16,'interpreter','latex'); ylabel('Scattering length ($\times a_0$)','fontsize',16,'interpreter','latex'); %} % Capture the frame and write to video frame = getframe(gcf); % Capture the current figure writeVideo(v, frame); % Write the frame to the video % sgtitle('Mean-field instability boundary','fontsize',16,'interpreter','latex') end % Close the video file close(v); %% function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, theta, phi) Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2))); gamma4 = 1/(sqrt(2*pi) * MeanWidth); Fka = (3 * cos(deg2rad(theta))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(theta))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(theta))^2)); Ukk = (gs + (gdd * Fka)) * gamma4; end function ret = computeTotalEnergyPerParticle(x, as, AtomNumberDensity, wz, lz, gs, add, gdd, PlanckConstantReduced) eps_dd = add/as; % Relative interaction strength MeanWidth = x * lz; gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2)); % Quantum Fluctuations term gamma4 = 1/(sqrt(2*pi) * MeanWidth); gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2); gQF = gamma5 * gammaQF; Energy_AxialComponent = (PlanckConstantReduced * wz) * ((lz^2/(4 * MeanWidth^2)) + (MeanWidth^2/(4 * lz^2))); Energy_TransverseComponent = (0.5 * (gs + (2*gdd)) * gamma4 * AtomNumberDensity) + ((2/5) * gQF * AtomNumberDensity^(3/2)); ret = (Energy_AxialComponent + Energy_TransverseComponent) / (PlanckConstantReduced * wz); end