function visualizeMagneticField(obj, x_range, y_range, z_range) f_h = Helper.getFigureByTag('VisualizeMagneticFieldFor2DMOT'); set(groot,'CurrentFigure',f_h); a_h = get(f_h, 'CurrentAxes'); if ~isempty(get(a_h, 'Children')) clf(f_h); end f_h.Name = 'Visualization'; f_h.Units = 'pixels'; set(0,'units','pixels'); screensize = get(0,'ScreenSize'); f_h.Position = [[screensize(3)/3.5 screensize(4)/3.5] 820 645]; xmin = x_range(1); xmax = x_range(2); ymin = y_range(1); ymax = y_range(2); zmin = z_range(1); zmax = z_range(2); dx = (xmax-xmin)/8; dy = (ymax-ymin)/8; dz = (zmax-zmin)/8; if dx ~= 0 xm = xmin:dx:xmax; else xm = zeros(1,5); end if dy ~= 0 ym = ymin:dy:ymax; else ym = zeros(1,5); end if dz ~= 0 zm = zmin:dz:zmax; else zm = zeros(1,5); end [meshx,meshy,meshz] = meshgrid(xm,ym,zm); % construct data points switch obj.SimulationMode case '2D' alpha = obj.MagneticGradient; Bx = @(x,y,z) alpha .* z; By = @(x,y,z) 0 .* y; Bz = @(x,y,z) alpha .* x; Bx_val = Bx(meshx, meshy, meshz); By_val = By(meshx, meshy, meshz); Bz_val = Bz(meshx, meshy, meshz); case '3D' % Development in progress end quiver3(meshx, meshy, meshz, Bx_val, By_val, Bz_val, 'Color', ' #6600ff'); axis equal hXLabel = xlabel('x'); hYLabel = ylabel('y'); hZLabel = zlabel('z'); hTitle = sgtitle('Magnetic Field for 2-D MOT'); set([hXLabel, hYLabel, hZLabel] , ... 'FontSize' , 14 ); set( hTitle , ... 'FontSize' , 18 ); end