%% Physical constants PlanckConstant = 6.62607015E-34; PlanckConstantReduced = 6.62607015E-34/(2*pi); FineStructureConstant = 7.2973525698E-3; ElectronMass = 9.10938291E-31; GravitationalConstant = 6.67384E-11; ProtonMass = 1.672621777E-27; AtomicMassUnit = 1.660539066E-27; BohrRadius = 5.2917721067E-11; BohrMagneton = 9.274009994E-24; BoltzmannConstant = 1.38064852E-23; StandardGravityAcceleration = 9.80665; SpeedOfLight = 299792458; StefanBoltzmannConstant = 5.670373E-8; ElectronCharge = 1.602176634E-19; VacuumPermeability = 1.25663706212E-6; DielectricConstant = 8.8541878128E-12; ElectronGyromagneticFactor = -2.00231930436153; AvogadroConstant = 6.02214076E23; ZeroKelvin = 273.15; GravitationalAcceleration = 9.80553; VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 % Dy specific constants Dy164Mass = 163.929174751*1.660539066E-27; Dy164IsotopicAbundance = 0.2826; DyMagneticMoment = 9.93*9.274009994E-24; %% Lattice spacing Wavelength = 532e-9; theta = linspace(1.5, 18.0, 100); LatticeSpacing = Wavelength ./ (2.*sin((theta*pi/180)/2)); figure(1); set(gcf,'Position',[100 100 950 750]) plot(theta, LatticeSpacing * 1E6, LineWidth=2.0) xlim([0 19]); ylim([0.5 21]); xlabel('Angle (deg)', FontSize=16) ylabel('Lattice spacing (µm)', FontSize=16) title(['\bf Upper bound = ' num2str(round(max(LatticeSpacing * 1E6),1)) ' µm ; \bf Lower bound = ' num2str(round(min(LatticeSpacing * 1E6),1)) ' µm'], FontSize=16) grid on %% Scaling of vertical trap frequency with lattice spacing Wavelength = 532e-9; a = 180 * (AtomicUnitOfPolarizability / (2 * SpeedOfLight * VacuumPermittivity)); Power = 5; waist_y = 250E-6; waist_z = 50E-6; TrapDepth = ((8 * a * Power) / (pi * waist_y * waist_z)) / (BoltzmannConstant * 1E-6); % in µK thetas = linspace(1.5, 18.0, 100); LatticeSpacings = zeros(1, length(thetas)); Omega_z = zeros(1, length(thetas)); for idx = 1:length(thetas) theta = 0.5 * thetas(idx) .* pi/180; LatticeSpacings(idx) = Wavelength ./ (2.*sin(theta)); Omega_z(idx) = sqrt(((16 * a * Power) / (pi * Dy164Mass * waist_y * waist_z)) * ... ((2 * (cos(theta)/waist_z)^2) + ((Wavelength * sin(theta)/pi)^2 * ... ((1/waist_y^4) + (1/waist_z^4))) + (pi / LatticeSpacings(idx))^2)); end nu_z = Omega_z ./ (2*pi); figure(2); set(gcf,'Position',[100 100 950 750]) plot(LatticeSpacings * 1E6, nu_z * 1E-3, LineWidth=2.0) xlim([0.5 21]); xlabel('Lattice spacing (µm)', FontSize=16) ylabel('Trap frequency (kHz)', FontSize=16) title(['\bf Upper bound = ' num2str(round(max(nu_z * 1E-3),2)) ' kHz ; \bf Lower bound = ' num2str(round(min(nu_z * 1E-3),2)) ' kHz'], FontSize=16) grid on %% Scaling of Recoil Energy - All energy scales in an optical lattice are naturally parametrized by the lattice recoil energy LatticeSpacing = linspace(2E-6, 20E-6, 100); RecoilEnergy = PlanckConstant^2 ./ (8 .* Dy164Mass .* LatticeSpacing.^2); figure(3); set(gcf,'Position',[100 100 950 750]) semilogy(LatticeSpacing * 1E6, RecoilEnergy/PlanckConstant, LineWidth=2.0, DisplayName=['\bf Max = ' num2str(round(max(RecoilEnergy / PlanckConstant),1)) ' Hz; Min = ' num2str(round(min(RecoilEnergy / PlanckConstant),1)) ' Hz']) xlim([0.5 21]); xlabel('Lattice spacing (µm)', FontSize=16) ylabel('Recoil Energy (Hz)', FontSize=16) title('\bf Scaling of Recoil Energy - All energy scales in an optical lattice are naturally parametrized by the lattice recoil energy', FontSize=12) grid on legend(FontSize=12) %% Interference pattern spacing in ToF - de Broglie wavelength associated with the relative motion of atoms ExpansionTime = linspace(1E-3, 20.0E-3, 100); figure(4); set(gcf,'Position',[100 100 950 750]) labels = []; for ls = [2E-6:2E-6:5E-6 6E-6:6E-6:20E-6] InteferencePatternSpacing = (PlanckConstant .* ExpansionTime) ./ (Dy164Mass * ls); plot(ExpansionTime*1E3, InteferencePatternSpacing* 1E6, LineWidth=2.0, DisplayName=['\bf Lattice spacing = ' num2str(round(max(ls * 1E6),1)) ' µm']) hold on end xlim([0 22]); xlabel('Free expansion time (milliseconds)', FontSize=16) ylabel('Interference pattern period (µm)', FontSize=16) title('\bf Interference of condensates - Fringe period is the de Broglie wavelength associated with the relative motion of atoms', FontSize=12) legend(labels, 'Location','NorthWest', FontSize=12); grid on legend show